Optimization of Sparse Matrix-Vector
Multiplication by Specialization

Abstract

Program specialization is the process of generating optimized programs
based on available inputs. It is particularly applicable when some input
data are used repeatedly while other input data vary. Specialization can
be employed at compile-time as well as at run-time, depending on when
the inputs become available.

In this paper we explore the potential for obtaining speed-ups for
sparse matrix-dense vector multiplication using specialization, in the case
where a single matrix is to be multiplied by many vectors. We experi-
ment with three methods involving matrix-based specialization, compar-
ing them to four methods that do not (including OSKI and INTEL’s MKL
library). For this work, our focus is the evaluation of the speed-ups that
can be obtained with program specialization without considering the over-
heads of the code generation. Our experiments use 17 matrices from the
Matrix Market and run on seven machines. In 100 of those 119 cases, the
specialized code runs faster than any version without specialization. We
have also found that the best method depends on the matrix and machine;
no method is best for all matrices and machines. Our results also show
that hybrid methods may also improve the performance further.

Keywords sparse matrix-vector multiplication, program specialization,
run-time code generation.

1 Introduction

The technique of program specialization begins with the observation that many
computations get their inputs in two parts: an early, stable part, and a late,
dynamic part. One then asks the question: Given the early data, can we fashion
a new, specialized, program that will process the dynamic data very efficiently?
For example, in some numerical applications, a single matrix M is multiplied
by many vectors v; M is early and stable, the vectors late and dynamic. Can
we create a very efficient function multBy,,(v,w) to multiply M by an input
vector v (placing the result in w)?

Program specialization is a well-studied area. It also goes by the name
staging [Taha and Sheard, 2000; Westbrook et al., 2010]; a popular technique of
automatic specialization is called partial evaluation [Jones et al., 1993]. Research

has produced many examples of programs, in many problem domains, that have
been optimized by specialization. However, most of the work has focused on
languages and infrastructure, rather than realistic applications. Take the matrix
multiplication example again. It is easy to see that the “optimal” approach is
simply to unfold the calculation. Instead of a loop iterating over M and wv,
multBy,, consists of a long sequence of assignment statements of the form

wlil = M;j, * vljol + M , * v[j1l + ...

where the italicized parts — 4, M, j,, jo, etc. — are fized values, not variables
or subscripted arrays. (The simpler case of vector-vector dot product is a stan-
dard “toy” example in this field [Davies and Pfenning, 1996]). This code is
“optimal” in the sense of producing the minimum instruction count; a standard
Compressed-Sparse-Row (CSR) loop (see §2.1) will execute perhaps five times
as many instructions as this unfolded code. They will, of course, execute the
same number of floating-point operations; the additional instructions are all
integer, control, or load operations.

However, it will come as no surprise to those who work in the area of high-
performance computing that instruction count tells only a part of the story.
Execution speed is affected by such factors as the quality of the code (e.g.
register usage), and memory system performance. Traditionally, the latter is
concerned primarily with avoiding cache misses when accessing v and w (with
accesses to M being purely sequential and therefore not subject to optimization);
a new concern that arises here is access to the code itself.

This paper addresses the potential for optimizing sparse matrix—dense vector
multiplication by specialization relative to the matrix M, using matrices of
realistic size and structure. To that end, we explore a variety of methods and
report on their efficiency. The methods (described in detail in §2) are these:

Compressed sparse row (CSR). This is the straightforward implementa-
tion using the most traditional representation for sparse matrices. Some
efficiency is gained by unrolling the inner loop; we refer to CSR with the
inner loop unrolled u times as CSR,,.

Diagonal. This is a well-known method that is applicable when M is very
strongly banded — that is, a large percentage of its non-zeros occur on
diagonals which are very dense. It uses a simple loop that can be easily
vectorized on modern computers. All our calculations use double-precision
floating-point numbers on machines with 128-bit wide vector registers, so
we are limited to a 2-fold speed-up at best. (Also, when diagonals are not
100% dense, zeros need to be inserted, increasing the number of floating-
point operations and loads.)

OSKI. This is the method implemented in the OSKI library [Im et al., 2004;
Demmel et al., 2005; Vuduc et al., 2002] that takes a matrix and divides
it into blocks to generate efficient per-block code (at the cost of having to
insert some zeros into the matrix data). OSKI, . is OSKI with blocks of
size 7 X c.

Unfolding. This is the simple unfolded code described above.

CSRbyNZ. This method generates a loop for each group of rows that contain
a given number of non-zeros, using a representation similar to Mellor-
Crummey and Garvin [2004]. In effect, this provides a perfect unrolling
of the inner loop of CSR.

Stencil. This method analyzes the matrix to find the patterns of non-zero
entries in each row of M, and generates, for each pattern, a loop that
handles all the rows that have that pattern.

The methods can be classified into four groups:

e Those that are completely generic and operate on the standard CSR rep-
resentation (CSR).

e Those that require some restructuring of the data but are still generic and
do not perform matrix-based specialization of code (OSKI, diagonal).

e Those that require specialization based on the locations (but not on actual
values) of the non-zero elements of the matrix (CSRbyNZ, stencil).

e Those that require specialization based on the non-zero values in the ma-
trix (unfolding).

The “bottom line” is shown in Table 1. We tested the methods on seventeen
matrices and seven machines. This table shows which method was most efficient
for each pair, and says how much it improved over CSRy (chosen as the most
efficient non-specialized method). This table illustrates the two main points of
this paper:

1. In most cases, one of the methods involving matrix-based code generation
is the fastest.

2. There is no one best method: it varies both across machines and across
matrices.

Specifically, the table shows that the simple unfolding described above is in-
deed sometimes the fastest method. In fact, the simple CSR code (with some
unrolling of the inner loop) is also, sometimes, the fastest method. Out of our
119 (17x7) trials, the best specializers were: stencil (56 times), CSRbyNZ (29),
unfolding (15), diagonal (7), CSR3 (7), CSR4 (2), CSR5 (3).

We have also run experiments using hybrid methods, where we, for example,
use a stencil calculation for some subset of the matrix and an unrolled CSR loop
for the remainder. The space of possibilities here is so huge that we explore it
only superficially, although we present what we believe will be the best hybrid
methods (see §4.1).

The main contribution of this paper is a systematic comparison of a number
of methods for performing sparse matrix—dense vector multiplication, including

| chicago [i2pcd loomel [loome2 [loome3 [pl turing |

add32 CSRbyNZ(65) | CSRbyNZ(91) | CSRbyNZ(88) | CSRbyNZ(88) | CSRbyNZ(88) | CSRbyNZ(69) | CSRbyNZ(94)
cavity(02 CSRbyNZ(81) stencil(70) CSR5(51) unfolding(71) CSR3(95) CSRbyNZ(82) CSR4(92)
cavity23 stencil(72) stencil(75) stencil(76) stencil(76) CSR3(97) stencil(73) CSR3(96)
fidap001 CSRbyNZ(76) stencil(67) unfolding(65) | unfolding(67) CSR3(97) CSRbyNZ(80) CSR3(92)
fidap005 unfolding(27) unfolding(41) unfolding(41) unfolding(41) | unfolding(51) | unfolding(34) unfolding(50)
fidap031 stencil(60) stencil(60) stencil(75) stencil(75) CSR3(95) stencil(64) CSR3(95)
fidap037 || CSRbyNZ(78) | CSRbyNZ(85) | CSRbyNZ(88) | CSRbyNZ(87) | CSR4(92) | CSRbyNZ(31) | CSRs5(91)
memplus || CSRbyNZ(77) | CSRbyNZ(90) | CSRbyNZ(91) | CSRbyNZ(92) | CSRbyNZ(93) | CSRbyNZ(30) | CSRbyNZ(96)
mhd3200a stencil(60) stencil(66) stencil(66) stencil(63) stencil(86) stencil(62) stencil(85)
mhd4800a stencil(60) stencil(65) stencil(57) stencil(63) stencil(85) stencil(61) stencil(87)
nnc666 CSRbyNZ(71) | unfolding(50) unfolding(48) unfolding(49) | CSRbyNZ(84) | CSRbyNZ(74) | CSRbyNZ(84)
orsregl stencil(63) stencil (68) stencil (40) stencil(69) stencil(64) stencil(66) stencil(68)
pde900 diagonal(52) diagonal(53) stencil(37) diagonal(53) diagonal(49) diagonal(57) diagonal(53)
rdb2048 CSRbyNZ(94) | unfolding(62) CSR5(59) unfolding(69) stencil(66) CSRbyNZ(93) stencil(67)
saylrd diagonal(66) stencil(64) stencil(86) stencil(64) stencil(64) stencil(61) stencil(69)
shermanb stencil(50) stencil(60) stencil(46) stencil(63) stencil(69) stencil(53) stencil(72)
utmb5940 stencil(59) stencil(68) stencil(69) stencil(70) stencil(84) stencil(61) stencil(81)

Table 1: Best method for all matrices/machines; run time given in parentheses
as a percentage of CSRy. Characteristics of the machines and matrices can be
found in Tables 3 and 4.

methods that are specialized to a particular matrix. The methods evaluated
are “generic” in the sense that they are not designed for matrices of any very
particular form, but would apply in general to sparse matrices of the kind found
in the Matrix Market [Matrix Market]. (It is always possible that a better
method than any of ours could be found for a specific matrix, using more subtle
properties of that matrix.)

Our experimental results show that methods that require matrix-based spe-
cialization usually have the best performance. These methods only make sense
in a scenario like the one described above, where one matrix is multiplied sev-
eral times. Depending on when the matrix becomes available, specialization may
take place off-line or at run-time. In this work, we are not considering the cost of
specialization; rather, the question that we are first trying to answer is whether
specialization can produce speedups, and if so, of what magnitude. Of course,
the time devoted to specialization, especially when employed at run-time, is a
major issue which we discuss in §5.

Our experiments include comparisons with the running times of the Intel
math kernel library [Intel MKL]. We discuss some of the reasons for the timings
we are seeing, including matrix characteristics, and the effect of code size and
instruction cache size. In addition, we explain how this work fits into the overall
goal of creating a matrix-vector multiplication library.

The structure of the paper is this: In §2, we explain the set of methods listed
above in more detail; §3 describes our experimental setup; §4 shows our perfor-
mance numbers. In §5 we discuss how the methods can be used in the context
of a library. §6 discusses related work. Finally, future work and conclusions are
presented in §7.

Indirect access | Zero Code Size

to v7 filling?
CSR Yes No small
Unrolled CSR || Yes No small (proportional to degree of unroll)
Diagonal No Yes small
OSKI Yes, but fewer | Yes small (proportional to block size)

than CSR
Unfolding No No large (proportional to # of nonzeros)
CSRbyNZ Yes No modest (proportional to unique row lengths)
Stencil No No modest to large (proportional to # of stencils)

Table 2: Some

2 Methods

In this section, we describe the methods we use — which were briefly described

in the introduction — in detail.

characteristics of the methods

Here we are describing the basic methods, and most of our timing results
(such as those in Table 1) involve just basic methods. It is possible that the
most efficient code for M is obtained by mixing methods; this is discussed in

§4.1.

Before presenting the methods, we briefly mention the performance issues
that arise with any method:

Instruction count. This metric refers to the dynamic number of instructions.

All methods execute the same set of floating-point operations (possibly in
a different order), except diagonal and OSKI, which may perform extra
computations, due to the extra zeros added to obtain dense diagonals or
blocks, respectively. However, methods vary in the number of integer and
control operations they execute. One source of variation is this: Because
different columns in each row are occupied, different elements of the input
vector are accessed in each row; the obvious approach is to access elements
of v indirectly, through an array of indices; however, some of our methods
can avoid this.

Memory reference locality. Some methods require that M be restructured,

but once that is done, its values are referenced in purely sequential order,
in a single pass, for each call to multByM. However, the order in which
elements of v and w are accessed, and the data locality achieved in each,
varies. This affects the number of cache misses in reading/writing those
values.

Code size. The code size can affect performance by adding to the number

of memory reads, especially if the code fails to fit into the instruction
cache. The standard generic code — the CSR code and its unrollings —
is very short, and once loaded is unlikely to produce any cache misses.
The unfolded code produces code proportional in length to the number
of non-zeros in M. The stencil code falls in the middle; the length of the

code produced by this method depends on the number of stencils in the
matrix.

Table 2 characterizes each method in terms of code size, and whether indirect
access to v or filling (adding zeroes to M) is required.

As has been observed many times, modern CPUs defy simple modelling —
they often seem to vary in performance almost at random. The precise impact
of these factors has so far proven difficult to determine. Still, it is good to keep
them in mind in assessing how efficient a given method is likely to be.

In this discussion, we assume M is an n X n matrix, with nz non-zeros. Also,
we use zero-based indexing for all arrays.

(The code shown in this section is drawn from the actual generated code. For
most methods, we experimented with several versions of the code and adopted
the best. For OSKI, the results are based on our own coding of the method,
because experiments showed that our code generally outperformed the OSKI
library. A detailed discussion of low-level coding issues appears on our web
page [Authors” Web]. The Python script that generates the code is available
there as well.)

2.1 Compressed sparse rows

The most common representation for sparse matrices is compressed sparse rows,
or OSR.

The representation consists of three arrays:

e mvalues contains the non-zero values of M, in row-major order; this is a
double array of length nz.

e columns contains the indices of the columns in which non-zeros occur in
each row, again in row-major order; this is an integer array of length nz.

e rows is an integer array of length n + 1; for each 0 < i < n — 1, rows [4]
gives the index in mvalues and columns at which the non-zeros for row 4
begin. rows[n] contains nz; thus, for each 7, rows[i + 1] - rows[4] is the
number of non-zeros in row i.

With this representation, the inner loop of multByM is this, where i ranges
from 0 ton — 1:

k = rows[i]; // mvalues[k] = M[i,cols([k]],
// the first non-zero in row i
for (0; k < rows[i+1]; k ++)
ww += mvalues[k] * v[cols[k]];
wli]l = ww;

Note that this is generic code, not dependent in any way on M, and therefore
not requiring run-time specialization. We have found that unrolling the inner
loop, to a point, can be helpful. CSR, is CSR with an unrolling factor of wu;

“CSR” means CSR;. If u > 1, the code consists of an unrolled loop handling u
elements at a time and a “clean-up” CSR; loop handling the leftover elements.

CSR has a fairly high instruction count. Code size, even when the inner
loop is unrolled, is small. It should have good locality relative to w, referencing
each element exactly once. As to v, it depends. If M is strongly banded —
meaning the non-zeros are exclusively clustered around the main diagonal —
then it will have good locality in v as well. In most cases, there is a dense cluster
of non-zeros around the main diagonal, but also a good number of non-zeros
elsewhere; in this case, access to v will begin to look random, and locality will
be poor.

For both CSR and unfolding, we have experimented with blocking to improve
locality in v, but this has failed to produce any efficiency improvements. Most
likely, the matrices we are finding in the Matrix Market are banded enough that
there is naturally good locality in v.

2.2 Diagonal

If a matrix is almost perfectly banded, then this method can be used to take
advantage of vector units on many machines. In our case, since our calculations
are done in double-precision, and we are running the experiments in machines
with 128-bit wide vector registers the potential speed-up factor is 2 (or slightly
less, due to overheads).

The idea is to represent the matrix by diagonals (instead of rows) and mul-
tiply each diagonal by part of v and add those values to the corresponding part
of w. For example, for the main diagonal, the loop iterates over indices 0 to
n—1 and at each iteration executes “w[i] += mvalues[i]*v[i]” — code that
is easily vectorized.

Vector units can operate only on consecutive values, so this method requires
that any missing zeros be included in the representation, detracting from its
efficiency. Thus, we use this method only for matrix diagonals that are at least
80% dense; elements that do not occur in dense diagonals are handled using
CSRy. (See §4.1 for a discussion of “secondary specializers.”)

2.3 OSKI

This method is described in Im et al. [2004]; Demmel et al. [2005]; Vuduc et al.
[2002]. The idea is to divide the matrix into (small) dense blocks and perform the
multiplication on a block basis, with the code for a single block being unrolled.
The goal of this optimization is to increase register reuse. It also reduces the
amount of memory required to store indices for the matrix M, since a single
index is stored per block. The drawback is that non-zero blocks may still contain
zeros, and those have to be added to M, increasing the number of floating-point
operations.

For example, suppose n=100, and the chosen block size is 2 x 2. This divides
the matrix into 2500 blocks. Of those, some small percentage will be non-zero
— that is, will have at least one non-zero element — and the multiplication code

will iterate over just those blocks, performing a (very efficient) 2 x 2 multipli-
cation for each. However, many, if not most, of those blocks will contain some
zeros, and since the code requires that every block have exactly four elements,
those zeros will have to be included. Thus, the efficiency of this method depends
on the amount of “fill” added. Because the fill tends to rise with block size, we
have never found block sizes greater than 2 x 2 to give optimal results.

To save space, we omit the code for OSKI, which can be found in Im et al.
[2004].

2.4 Unfolding

This method was described in the introduction of this paper. The specialized
code consists of exactly n assignment statements, one for each row.

Unfolded code is truly minimal in instruction count, but the code size is
proportional to nz. As far as locality in v and w, those will be the same as
CSR, since it does the calculations in exactly the same order as CSR does.

Unfolding embeds the matrix values into the code. The alternative is to
read them from the vals array. If embedded in the code, the compiler puts the
unique floating point constants into the data section of the executable file and
reuses values when there is duplication. Therefore, the performance of the code
may not be exactly the same as the alternative version. We tried both, and
experienced that embedding the values in the code gives better performance on
average; details are available on our web page [Authors’ Web]. The advantage
of the alternative version is that it does not require the matrix values to be
present; it only requires to know the locations. Hence, code generation can take
place at an earlier time in case the matrix shape is available but not the values.

2.5 CSRbyNZ

CSRbyNZ groups the rows of M according to the number of non-zeros they
contain (similar to Mellor-Crummey and Garvin [2004]), and generates one loop
for each group. The rows array contains a permutation of the row numbers, in
which all the rows with a particular non-zero count are grouped together; cols
and mvalues serve the same purpose as with CSR, but must be reordered to
match the order of the loops. So, for example, if there are exactly six rows of
M that have three non-zeros, the loop for those rows would be as shown below,
where a simply indexes over rows:

for (i=0; i<6; i++) {
row = rows[a++];
wlrow] += mvalues[b] * v[cols[b]l]
+ mvalues[b+1] * v[cols[b+1]]
+ mvalues[b+2] * v[cols[b+2]];
b += 3;
}

In effect, this provides a perfect unrolling of the inner loop of CSR. Moreover,
there are rarely very many distinct non-zero counts, so code size is modest; for

example, among our seventeen matrices (see Table 4), the worst case is memplus,
with 17,758 rows but only 91 distinct non-zero counts. However, locality in both
w and v is likely to be poor; there is no reason to expect locality in v to be any
better than it is in CSR, and locality in w is likely to be worse, because the
rows handled in a given loop — and thus the elements of w assigned — may be
scattered throughout the array. Note that this method requires the elements of
M to be reordered, but once this is done, access to them is still sequential.

2.6 Stencil

Like CSRbyNZ, the stencil specializer starts by dividing the rows of M into
groups, and then generates a loop for each group. Here, the groups are deter-
mined not just by the number of non-zeros in a row, but by the actual pattern
of non-zeros, or rather, the pattern of non-zeros relative to the main diagonal.
Define the stencil of row i as the set of numbers {j — ¢ | M; ; # 0}; thus, for
example, if a row’s only non-zeros are on the main diagonal, and just before
and after the main diagonal, that row’s stencil would be {—1,0,1}. All the
rows that have the same stencil can be handled in a single loop. For example,
if rows 2, 4, and 6 are the only ones with stencil {—2,—1,0, 1,3}, then the loop
for this stencil would be:

int stencil_2[3] = {2, 4, 6};
for (i=0; i<3; i++) {
row = stencil_2[i];
VV = v+row;
wlrow] = vv[-2] * mvals[0] + vv[-1] * mvals[1]
+ vv[0] * mvals[2] + vv[1] * mvals[3]
+ vv[3] * mvals[4];
mvals += 5;

}

The advantage of this method is that it eliminates the cols matrix, and as
a result, there is no indirect access to v. The code size depends on the number
of stencils and the amount of computation (that is, the size) of each stencil.
In our experiments, code size for this method is usually modest, but there are
exceptions. Our worst example is again memplus, which has 16719 distinct
stencils, and code size of about 5MB.

This method performs well for banded matrices or matrices that show some
regularity with respect to the diagonal.

3 Experimental Setup

The seven target platforms on which we ran our experiments are listed in Ta-
ble 3. Our programs are written in C and compiled using clang -O3, with two
exceptions: MKL and diagonal were compiled using the Intel compiler, icc, be-

Name Processor & Freq (GHz) Cache Sizes (Bytes) Mem oS clang icc
L1 (I/D) [L2 [L3 (GB)

chicago || Intel Core 2 Duo P8600 @ 2.40 64K 3M - 2 MacOS Lion 10.7.4 3.2 12.1.5
i2pcd Intel Xeon L7555 @ 1.87 256K 2M 24M 64 Scientific Linux 6.3 3.2 12.1.3

loomel Intel Xeon E5640 @ 2.67 128K M 12M 12 Linux CentOS 5.8 3.2 -
loome2 Intel Core i7 880 @ 3.07 128K 1M 8M 8 Linux CentOS 5.8 3.2 12.1.4
loome3 Intel Core i5 2400 @ 3.10 32K 256K 6M 8 Linux CentOS 5.8 3.2 12.1.4
pl Intel Xeon E5405 @ 2.00 32K 6M — 2 Ubuntu Linux 10.04 3.1 12.0.4
turing Intel Xeon E5-2620 @ 2.00 32K 256K | 15M 16 Ubuntu Linux 12.04 3.2 13.0.0

Table 3: Specification of experimental machines.

Matrix n nz Diagonals Row | Stencils
Percentage [Fill rate | nz #

add32 4960 | 19,848 25% 0% 6 3,941
cavity02 317 5,923 0% 0% 21 187
cavity23 4,562 | 131,735 0% 0% 26 440
fidap01 216 4,339 4% 19% 24 216
fidap005 27 279 80% ™% 4 18
fidap031 3,909 | 91,165 3.5% 19% 28 642
fidap037 3,565 | 67,591 5% 0% 25 1,716
memplus || 17,758 | 99,147 18% 0% 91| 16,719
mhd3200a || 3,200 | 68,026 0% 0% 18 55
mhd4800a || 4,800 | 102,252 0% 0% 17 55
nnc666 666 4,032 0% 0% 11 383
osregl 2,205 | 14,133 100% 26% 4 27
pde900 900 4,380 100% 1% 3 9
rdb2048 2,048 | 12,032 83% 1% 3 18
saylrd 3,564 | 22,316 100% 9% 5 34
shermanb || 3,312 | 20,793 16% 0% 20 140
utmb5940 5,940 | 83,842 26% 6% 25 176

Table 4: Characteristics of the matrices

cause it produces much better times than clang or gcc for those specializers.
For non-vectorized code, clang, gcc, and icc produce similar times.!

We show results for 17 matrices from [Matrix Market], listed in Table 4. n
and nz are the dimensions and non-zero counts (all matrices are square). “Row
nz #” is the number of distinct row non-zero counts; for example, every row in
rdb2048 has either 4, 5 or 6 non-zeros. “Stencils” gives the number of stencils.
To understand the “Diagonals” column, recall that we use vectorizable code
only for diagonals that are at least 80% dense, and that any diagonal handled
with this code must have all elements present, even zeros. Under “Percentage,”
the first column is the percentage of non-zeros handled by diagonal code —
that is, the percentage that fall within diagonals that are at least 80% dense;

1We were unable to run icc on loomel, so MKL and diagonal were not tested on that
machine.

10

the second column is the percentage of zeros added to those diagonals. For
example, utm5940’s 21,820 elements are in dense diagonals, and an additional
1279 zeros had to be added to those.

Table 3 and 4 provide some guidance in understanding Table 1. We discuss
this further in §4.

To collect the timings, we did the following for each matrix/method /machine
combination: (1) Performed matrix-vector multiplication 10,000 times (on an
unloaded machine); (2) repeated (1) five times; and (3) chose the fastest of
those five trials. (We considered using the median of the five times instead of
the minimum. We computed the coefficient of variation for both methods, and
for both it was very small — always less than 3% and almost always less than
1% — on all machines except loomel. On loomel, the results using minimum
were much more stable than those using median. Further details and discussion
of this issue can be found on our website [Authors’ Web].)

4 Experimental Results

We ran the methods discussed in section 2: CSR, with u varying from 1 to
10; diagonal; OSKI with block sizes 2 x 1, 1 x 2, and 2 x 2; unfolding; CSR-
ByNZ; stencil. We also ran MKL [Intel MKL] (version 10.3) (on all machines
except loomel), using function mkl_dcsrmv, which performs matrix-vector mul-
tiplication on matrices in CSR format; by default, MKL uses multiple processors
when available, so to make a fair comparison, we used the sequential flag when
compiling to force it to use a single processor.

Table 1 gives the “bottom line.” Figure 1 gives details for each machine.
To reduce clutter, we show only one time for CSR (the best time), and one
for OSKI (similarly). Times are normalized to C'SRz, chosen because it is a
generally good method that can be employed without latency.

As noted earlier, stencil gives the best time most often, followed by CSR-
byNZ, then unfolding, C'SR, for various values of u, and diagonal. In our
experiments, neither OSKI nor MKL ever produced the best times.

The obvious question that arises from Figure 1 is “why?” Why do some
methods do particularly well for some matrices on some machines? This question
immediately brings the possible use of auto-tuning [Piischel et al., 2005; Demmel
et al., 2005; Im et al., 2004; Vuduc et al., 2004] to choose the best method for
a given matrix on a particular machine (see our discussion in §5). It is clear
from Figure 1 that, as in other auto-tuning situations, the answer cannot come
simply from looking at the matrix nor from looking at the machine, but must
take account of information about both. We do not have a complete answer to
the question as yet, but there are some observations that we can make about
each method (though almost all admit of some exceptions).

CSR. In 11% of our trials overall, no specialized method could outperform the
best unrolling of CSR. (This is particularly true of turing and loome3,
where CSR was best on five out of our 17 matrices; in fact, on these

11

chicago

i2pc4
16 20
14 18
*
4
12 16
L *
4 g . > 14
10 =8 &0 il a}
E:) L 12
08 X 3 k. ! s
| 10 SR S §§§h;35 ooEy
06
08 2 f
L » 3
04 06
L
02 04
%, 0, %, %, %, %, %, e,) e, %, P %, %, % S, %, %, %5, %5, %, %, e, 7, 7, e %, 0, % %0, Y, %
%05, %, %00, Yo, e, 0. 7y, o, O, 05 T, R0y R Uy 0y, 25, 20,7, %, op, B, S, By 2y, . 5 K Ve, R, 80 Uty sy 2,
Pt g e ¥ Pt s M Sy B % Mgt
6 loomel loome2
. 20
14 18
16
12
14
105 al
i o X ox D E? g| 12 .
< [.
° L : r TR j % TR ET
0.6 d i 08 ’ 5 8 L 5
£ .
o & L F s & n
06
04
0.4
loome3
pl
16 [18
14 16
L. 14
12
12
-
10 (£ 5 i} ja} £ 3 ! L.
B 0ok ! "oy 1§ Lo EELE - ERvE IS S
08 08 . o5
06 06
-
04
0.4 -
turing
25
L
20 i
csrByNz X
Bestoski K
. LI Bestunroll [
. ¢ » unfold m
e ¥ g stencil ©
wolg mkl &
: i) Bt - o o H
<o P oole g X o diagonal A
05

Figure 1: Normalized execution time of the different methods with respect to
CSRy. For unroll and OSKI, the plot shows the time for the best parameter
value for each matrix and machine.

12

machines it was difficult to obtain any speed-ups.) CSR has the one
clear advantage that its code is small, but that does not seem sufficient
to explain its good performance. In any case, in terms of our library, the
question we want to answer is, how can we tell which unrolling of CSR will
be best? By looking at the non-zero counts of all the rows (not presented
here), we can confirm that the best unrolling is the one in which the most
elements are handled in the main loop rather than the clean-up loop.

Diagonal. This is a case where Table 4 almost completely explains the timings.
The one matrix for which diagonal is uniformly best is pde900, the most
strongly banded matrix: all elements are contained in dense bands, and
the dense bands are very dense.?2 For orsreg_1 and saylr4, which are also
very strongly banded, though not quite as strongly as pde900, diagonal
also does well. We note that the properties that make diagonal a good
method for a matrix will most likely also favor stencil; see below. We
should also again mention that the efficiency of diagonal is limited by
our computing with doubles; if we used floats — where vector units can
in principle perform four operations at once — or if our machines had a
wider vector unit (such as AVX), the results for diagonal might be very
different.

OSKI. In our experiments, OSKI rarely performed well. Space keeps us from
going into great detail, but to provide one data point as an example: For
add32, on every machine, the best version of OSKI is OSKIy;, and the
worst is OSKI; 2, with OSKI3 2 in the middle. The fill ratios are: 41%
for both OSKI; 5 and OSKIs 1, 89% for OSKI, 5. With these fill ratios, it
is not surprising that OSKI is not competitive; these numbers also show
that fill ratio is not the entire story.

Unfolding. Unfolding consistently gives the best times for fidap005, and some-
times does so for cavity02, fidap001, nnc666, and rdb2048. Again, a glance
at Table 4 gives at least a partial explanation: These are our smallest ma-
trices (fidap005 is the very smallest), except for pde900, which happens to
be handled extremely well by diagonal. However, unfolding is always the
best only for fidap005. Otherwise, unfolding shows up mostly on i2pc4,
loomel, and loome2; it cannot be a coincidence that these are the ma-
chines with the largest L1 (and smallest L2) caches. Likewise, the largest
matrix for which unfolding is ever best is rdb2048 (nz = 12,032), and it
is best on i2pc4 and loome2, and competitive on loomel.

CSRbyNZ. It is best to contrast CSRbyNZ with stencil. To a first order of
approximation, this method is comparatively good when the matrix is too
large for unfolding and has too many stencils. For add32, fidap037, and
memplus, which have the largest number of stencils, CSRbyNZ is the best
on all machines, with a single exception (CSR4 for fidap037 on loome3).

2Reminder: we did not test the diagonal method on loomel.

13

It also bears mentioning that quite often, when this method is the best,
we have gained very little speed-up.

Stencil. Again, the situation is fairly clear: All the matrices do fairly well with
this method unless the number of stencils is too large. For the matrices
with between 55 and 176 stencils (mdh3200a, mhd4800a, shermanb, and
utm5940), stencil is the best on every machine, and for cavity23, with 440
stencils, it is still best on 5 out of 7 machines. On the other hand, stencil
count does not tell the whole story: for rdb2048, with only 18 stencils,
stencil is the best method only on loome3.

Thus, for some of our matrices, we can predict the best specializer based
only on the matrix’s characteristics. For others — such as cavity02, fidap001, fi-
dap031, nnc666, and rdb2048 — the best method varies across machines. More-
over, Figure 1 shows that selecting the second-best method can result in a sub-
stantial loss of performance relative to the best, sometimes exceeding a factor
of 2.

Finally, we were surprised that performance of MKL in general is very poor,
even slower than our reference C'SRs. This is probably because MKL is tuned
for parallel computation rather than sequential.

4.1 Mixed methods

Mixing methods — partitioning a matrix and using different methods for the
parts — can produce additional speed-ups. Although we have not explored this
space fully (and therefore do not show these results in Table 1), in a few cases,
we have obtained substantial speed-ups in this way. These are listed in Table 5.
Those were all cases where stencil was the best performer, and improvements
were obtained by mixing stencil with a different “secondary specializer.”

There are two basic ideas here: (1) Consider the stencil code shown in §2.6.
If a stencil is “unpopular” — there is just one row with that stencil (that is, if,
in the example in §2.6, array stencil_2 had one element) — we dispense with
the loop, and obtain code resembling unfolding. But unfolding is not necessarily
optimal; we can instead gather all those rows and handle them by a different
method. (2) We can limit the amount of stencil code in several ways, of which
we mention one: We can partition M into a band of a certain width around the
main diagonal, handling the elements within the band by stencil and the others
by a different method. The effect is fewer stencils, with higher popularity. (To
see this, consider the extreme case of a band of width three; there are only a
total of eight possible stencils — in practice, only four, since the main diagonal
is usually 100% dense.) We can use both methods: consider stencils only within
a band, and take all the elements either outside the band, or inside it but in
unpopular stencils, and treat them separately. Table 5 shows the cases where we
obtained significant speed-ups; reported speed-up is relative to the best time,
as given in Table 1; bandwidth of oo means method (2) was not employed.

14

[Machine [Matrix [Band [Secondary [Speed-up |

chicago | cavity02 10 CSRbyNZ 10%
nnc666 50 CSRbyNZ 17%

loomel | cavity02 20 CSRbyNZ 18%
fidap001 10 CSRbyNZ 32%

rdb2048 100 CSRa 24%

saylrd 00 unfolding 27%

loome3 nnc666 00 CSRbyNZ 14%
pl nnc666 00 CSRbyNZ 15%
turing fidap005 50 CSRbyNZ 22%
nnc666 0 CSRbyNZ 17%

Table 5: Speed-ups from mixed methods, relative to the best times, as given in
Table 1.

With all the possible band widths and choices of secondary specializers, the
“design space” here is obviously enormous. We plan to study the possibilities
further.

Lastly, we mention a specializer whose use inherently involves partitioning
the matrix: diagonal. Since the vectorizable code handles only values that
occur in dense diagonals, a secondary method is used for the remainder. In
our experiments reported above, we used CSRy;. We tried other secondary
specializers, but a glance at the previous results (especially Table 4) shows why
this effort was bound to fail: The only matrices for which diagonal works well
are those where virtually every element is in a dense diagonal, but then there
are few or no elements left for the secondary specializer.

5 Applications

Specialization is useful when a matrix is going to be multiplied by many vec-
tors. There are frequently cases where there are many matrices that have the
exact same sparseness structure (in Matrix Market these are called “pattern
matrices”); since all our methods except unfolding rely only on the sparseness
structure, these methods could be used to optimize many matrix multiplications.

Ultimately, one would prefer to have a simple matrix library that could be
called as simply as any other, but would choose, and generate, the best code
at run time. The library would be given a sparse matrix M of doubles, repre-
sented in compressed-sparse-row (CSR) format, and the library would produce
a pointer to a function of type void multByM (double v[], double wl[]).
When called subsequently, multByM multiplies M by v and places the result in
w. (The OSKI library [Im et al., 2004; Demmel et al., 2005; Vuduc et al., 2002]
operates similarly.)

When first presented with M, the system determines which method will pro-
duce the most efficient multByM. It may determine that a certain method for
which code already exists is the best, and immediately returns a pointer to the

15

existing function; or it may determine that a specialized code which must be
generated at run-time, will be most efficient. This process itself will take time,
and run-time generation of the specialized code, if that is the decision, will
take even more; in any case, the system cannot produce overall speed-ups if the
matrix is to be multiplied only a small number of times.

This library organization raises several questions:

1. What methods of generating multByM are likely to produce eflicient code
and what are the kind of speedups that these methods can deliver? This
is the question we address in this paper.

2. How can the system determine the best method for a particular matrix
on a particular machine?

3. How can the latency introduced by the code specialization process be
minimized?

Question (2) is a difficult one because the best method varies according to the
matrix and machine. The solution is auto-tuning [Whaley et al., 2001; Frigo,
1999; Piischel et al., 2005; Li et al., 2005; Demmel et al., 2005; Datta et al.,
2008; Vuduc et al., 2004]. Here, one gathers information about the machine
at “install time,” by generating codes for several matrices and timing them.
This information is fed into the run-time specialization process, which uses it,
together with characteristics of the matrix M, to determine how to generate
multByM. We do not yet know how difficult this will be, as this is ongoing
research. However, we discussed the general ideas in §4.

To address question (3), auto-tuning (and, if needed, run-time specialization)
can be performed in parallel, while the library uses the generic CSR method (or
another existing code) until the specialized code is ready. For fast generation of
code, template-based approach can be taken [Smith et al., 2003; Consel et al.,
2004], where pieces of binary code that contain holes are filled in with constants
and composed to build executable code.

The work presented here discusses generating sequential code for a problem
that is highly parallelizable. To see how optimizing sequential execution can
help, consider a scenario where one decomposes a large matrix into multiple
smaller ones, by taking various load-balancing factors into account, and assigns
each to a thread. The threads will run sequential code to compute their contri-
bution to the overall result. The findings reported here can help in the process
of deciding which format and method to use for which submatrix.

6 Related Work

Sparse matrix-dense vector multiplication is an operation that is used in many
scientific problems. Using a blocking order to improve locality has been stud-
ied in the OSKI project [Im et al., 2004]. There are several approaches that
utilize the structure of the matrix to improve performance, two of which are

16

Mellor-Crummey and Garvin [2004] and Shantharam et al. [2011]. A number of
researchers have looked at multi-core implementations [D’Azevedo et al., 2005;
Jain, 2008; Buluc et al., 2011].

The library described in §5 will use “auto-tuning,” whereby relevant machine
characteristics are gathered at “install time,” and combined with characteristics
of the input data to determine the best method for a problem. Auto-tuning is
used to overcome the problem that the best code for a problem can vary from
machine to machine. It is used by OSKI; other examples are Whaley et al.
[2001]; Frigo [1999]; Piischel et al. [2005]; Li et al. [2005]; Datta et al. [2008];
Vuduc et al. [2004].

Run-time code generation is used routinely in “just-in-time” compilers. For
example, Google’s V8 compiler for JavaScript [V8] overcomes the inherent in-
efficiency of dynamic typing by specializing the code to the data types that
occur most often at run time. However, in this application of run-time code
generation, the programmer has little or no control.

In program specialization — also called code generation, partial evaluation,
or staging — the programmer determines exactly what code will be generated.
The area has been heavily studied, especially with respect to language features,
such as type-checking, that promote simplicity and safety of specialization [Taha
and Nielsen, 2003; Westbrook et al., 2010; Choi et al., 2011]. Work in this area
specifically addressing high-performance for realistic applications includes work
on marshalling [Aktemur et al., 2005; Cohen and Herrmann, 2005] and on code-
optimizing transformations [Cohen et al., 2006]. With run-time specialization,
the focus moves toward the efficiency of specialization itself [Kamin et al., 2003;
Smith et al., 2003].

Our work draws from these three areas: We use (run-time) program special-
ization to optimize sparse matriz-vector multiplication, taking into account the
need for auto-tuning, since the most appropriate method varies according to the
machine and matrix.

7 Future work and conclusions

We have shown that the method of program specialization can be used to obtain
speed-ups for sparse matrix-dense vector multiplication, in those cases where one
matrix is to be multiplied by many vectors. The obvious method of completely
unfolding the computation is sometimes effective, but for larger matrices, more
subtle methods are needed. We have provided an extensive benchmark to com-
pare the performance of methods. We have also shown that there is no one best
method, and we discussed the use of “auto-tuning” in a proposed library for
this problem. Lastly, we showed how partitioning a matrix and using different
methods for different parts can be advantageous; the design space becomes very
large here; we do not yet know how to find the very best multiplier for a given
matrix.

Our goal in this work was to address the question “How much speedup can
be obtained by program specialization for sparse matrix-vector multiplication?”

17

We have ambitions beyond this problem. Obviously, there are many other ma-
trix calculations that might be amenable to specialization. Not only the calcu-
lations where the input data can be divided into an early, stable part and a late,
dynamic part, but also the problems where a large number of variations exist
can benefit greatly from the generative approach combined with auto-tuning.
The 19" Nii Shonan meeting [Kiselyov et al., 2012; Aktemur et al., 2013] has
compiled a list of such problems including a staged matrix algebra library, a
dynamic programming library, a staged hidden Markov model, and an image
processing pipeline, among others.

References

B. Aktemur, J. Jones, S. Kamin, and L. Clausen. Optimizing marshalling by
run-time program generation. In GPCFE 05, pages 221-236, 2005.

B. Aktemur, Y. Kameyama, O. Kiselyov, and C. Shan. Shonan challenge for
generative programming: short position paper. In Proceedings of the ACM
SIGPLAN 2013 workshop on Partial evaluation and program manipulation,
PEPM ’13, pages 147-154, New York, NY, USA, 2013. ACM.

Authors” Web. URL removed-for-blind-review. Accessed January 2013.

A. Buluc, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multi-
threaded algorithms for sparse matrix-vector multiplication. IPDPS ’11, 13:
721-733, 2011.

W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static analysis of multi-staged
programs via unstaging translation. In POPL ’11, pages 81-92, 2011.

A. Cohen and C. Herrmann. Towards a high-productivity and high-performance
marshaling library for compound data. In 2nd MetaOCaml Workshop, 2005.

A. Cohen, S. Donadio, M. J. Garzaran, C. Herrmann, O. Kiselyov, and
D. Padua. In search of a program generator to implement generic transforma-

tions for high-performance computing. Science of Computer Programming,
62(1):25-46, 2006.

C. Consel, J. Lawall, and A. Le Meur. A tour of Tempo: a program specializer
for the C language. Sci. Comput. Program., 52(1-3):341-370, 2004.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures. In SC ’08, pages 4:1-4:12, 2008.

R. Davies and F. Pfenning. A modal analysis of staged computation. In POPL
’96, pages 258-270, 1996.

E. D’Azevedo, M. Fahey, and R. Mills. Vectorized sparse matrix multiply for
compressed row storage format. In ICCS’05, pages 99-106, 2005.

18

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C.
Whaley, and K. Yelick. Self Adapting Linear Algebra Algorithms and Soft-
ware. Proc. of the IEEFE, 93(2):293-312, 2005.

M. Frigo. A Fast Fourier Transform Compiler. In PLDI 99, pages 169-180,
1999.

E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework for sparse
matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):135-158, 2004.

Intel MKL. URL http://software.intel.com/en-us/intel-mkl. Accessed
January 2013.

A. Jain. poski: An extensible autotuning framework to perform optimized
spmvs on multicore architectures. Master’s thesis, University of California at
Berkeley, 2008.

N. Jones, C. Gomard, and P. Sestoft. Partial evaluation and automatic program
generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. ISBN
0-13-020249-5.

S. Kamin, L. Clausen, and A. Jarvis. Jumbo: Run-time Code Generation for
Java and Its Applications. In CGO 03, pages 48-56, 2003.

O. Kiselyov, C. Shan, and Y. Kameyama. Nii Shonan Meeting 19,
2012. http://www.nii.ac.jp/shonan/seminar019/ and http://www.nii.
ac.jp/shonan/wp-content/uploads/2011/09/No.2012-4.pdf.

X. Li, M. J. Garzarédn, and D. Padua. Optimizing Sorting with Genetic Algo-
rithms . In CGO 05, pages 99-110, 2005.

Matrix Market. URL http://math.nist.gov/MatrixMarket. Accessed Jan-
uary 2013.

J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector product
computations using unroll and jam. Int. J. High Perform. Comput. Appl., 18
(2):225-236, May 2004.

M. Piischel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proc. of the IEEE, 93(2):
232-275, 2005.

Manu Shantharam, Anirban Chatterjee, and Padma Raghavan. Exploiting
dense substructures for fast sparse matrix vector multiplication. Int. J. High
Perform. Comput. Appl., 25(3):328-341, August 2011.

F. Smith, D. Grossman, G. Morrisett, L. Hornof, and T. Jim. Compiling for
template-based run-time code generation. J. of Functional Programming, 13
(3):677-708, 2003.

19

W. Taha and M. Nielsen. Environment classifiers. In POPL 03, pages 26—37,
2003.

W. Taha and T. Sheard. Metaml and multi-stage programming with explicit
annotations. Theoretical Computer Science, 248(1-2):211-242, 2000.

V8. V8 JavaScript Engine. URL http://code.google.com/p/v8/. Accessed
January 2013.

R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, and B. Lee. Per-
formance Optimizations and Bounds for Sparse Matrix-Vector Multiply. In
Supercomputing 02, page 26, 2002.

R. Vuduc, J. Demmel, and J. Bilmes. Statistical models for empirical search-
based performance tuning. Int. J. High Perform. Comput. Appl., 18(1):65-94,
February 2004.

E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha. Mint:
Java multi-stage programming using weak separability. In PLDI ’10, pages
400411, 2010.

R.C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations
of Sofware and the ATLAS Project. Parallel Computing, 27(1-2):3-35, 2001.

20

