
Source-level Optimization of Run-Time
Program Generators?

Samuel Kamin, Barış Aktemur, and Philip Morton

University of Illinois at Urbana-Champaign, USA
{kamin, aktemur, pmorton}@cs.uiuc.edu

Abstract. We describe our efforts to use source-level rewriting to opti-
mize run-time program generators written in Jumbo, a run-time program
generation system for Java. Jumbo is a compiler written in compositional
style, which brings the advantage that any program fragment can be ab-
stracted out and compiled to an intermediate form. These forms can be
put together at run-time to build complete programs. This principle pro-
vides a high level of flexibility in writing program generators. However,
this comes at the price of inefficient run-time compilation. Using source-
level transformations, we optimize the run-time generation of byte code
from fragments, achieving speedups of 5–15%. We discuss the optimiza-
tion process and give several examples.

1 Introduction

Jumbo [1–4] is a Java compiler with code quotation and anti-quotation for
run-time program generation (RTPG). In this, it is similar to such systems
as MetaML [5], MetaOCaml [6], ‘C [7–9], and DynJava [10]. However, it has
a unique design based on the principle that, if the static compiler is structured
“compositionally,” there need be only that one compiler — its back end can serve
as the code-generating engine for RTPG. We have in the past [3] described the
advantages of this approach, and will again briefly do so in Section 2. It does,
however, possess one distinct disadvantage: inefficiency. This paper describes our
on-going efforts to address this problem.

In each of the systems just mentioned, program generators are created by us-
ing a code quotation/anti-quotation syntax. For example, in Jumbo, the notation
$<while (x>0) ‘Stmt(getBody())>$ indicates that, at run time, a while state-
ment is to be generated with its body returned from the method call getBody().
Since the latter is not known at compile time, it is called a “hole.” Quotation
marks, $< and >$, can contain an entire compilation unit — an interface or list
of classes — or a fragment as small as a single variable or constant. Quoted code
cannot be compiled to Java virtual machine (JVM) code: either it has holes or
it is not a full class and is therefore missing necessary context, such as field dec-
larations. (Technically, it is legal to quote a complete compilation unit, without
holes, but it is pointless, since it could be compiled statically.)
? Partial support for this work was received from NSF under grant CCR-0306221.

2

That fragments cannot be compiled all the way to bytecode does not mean
they cannot be compiled at all. Consider the case of a quoted class definition
with a hole where a method should go. In essence, we have a partial evaluation
problem: The compiler has two inputs — the quoted class and the method —
of which only the class is known at compile time. It is quite plausible that we
might apply the compiler to the class and obtain a “residual compiler” that will
receive the method and complete the compilation at run time. (The situation is
symmetric in the arguments. When the compiler sees the quoted method, it has
a similar problem, with two inputs — the method and its surrounding context
— of which it sees only one.)

How can we partially evaluate a compiler applied to an incomplete fragment?
The first point to note is that an ordinary compiler handles only compilation
units; when presented with a smaller fragment, it gives a syntax error; partial
evaluation cannot overcome that. The second point is that, given a compiler for
a real language, even if we provided a compilation unit (with holes), it would be
a practical impossibility to partially evaluate it mechanically.

In Jumbo, we address these problems in two ways. First, the Jumbo compiler
is compositional. This means it is structured in such a way that small fragments
are still meaningful to the compiler; they can be partially compiled, to an inter-
mediate representation we call Code. The Code value of a compound fragment
is a function solely of the Code values of its subfragments. Thus, in the example
above, when the method definition is supplied at run time, it is supplied in its
partially compiled form — not as source code or an abstract syntax tree (AST).
This Code value is somehow placed inside the Code value for the class, and the
result is compiled to JVM code.

Second, we have written a set of source-level transformations to optimize the
compilation of fragments. These are the subject of this paper. In pursuing this
strategy, we have also found that the compiler may need to be massaged to make
it more susceptible to transformations, though we have yet much to learn about
that process. The work is on-going; the results given here represent the current
state of our compiler.

In the paper, we elaborate on each of the themes mentioned above. Section 2
explains what we wish to achieve with our system; to give a preview, it argues
that the primary reason to insist on a single compiler is not to save development
time, but rather to ensure a high level of generality in the tool we produce. Sec-
tions 3 and 4 discuss compositional compilation in general, and its use in Jumbo,
respectively. Section 5 describes the analyses and transformations we have im-
plemented and Section 6 gives examples and timing results. In Section 7, we
discuss some of the difficulties presented by Java which have limited our success
in optimization, and ways to overcome them. Section 8 gives our conclusions.
Related work is noted throughout the paper, and is not segregated.

3

2 Trade-offs in RTPG systems

In previous work [3], we have argued that, in view of the many possible uses
of program generation and our relatively modest understanding of those uses,
RTPG systems ought to be as general and flexible as possible. Generality has two
meanings here: First, it refers to the richness of the language in which generated
programs are expressed — the language inside quotations. Second, it refers to
the programmer’s freedom in dividing her program into fragments.

Is it legal to fill the hole in $<int m () {‘(hole) return x;} >$ with
the declaration $<int x=10;>$? How about filling $<if (y==x) ‘(hole) else
... >$ with $<break L;>$? Is the position of the hole in this fragment le-
gal: $<try ... catch (‘(hole)) { ... }>$? Can the hole in $<‘(hole)
class C { ... }>$ be filled with $<import java.util.*;>$? These are the

kinds of questions we would ask to probe the generality, in the second sense, of
an RTPG system.

Different systems make different trade-offs among the values of generality,
safety, and efficiency. On the whole, safety and efficiency compete with gen-
erality. Disallowing the insertion of variable declarations, for example, allows
the types of all variables used in a fragment to be known, and thereby pro-
motes safety and efficiency, but it certainly constrains the programmer’s ability
to structure the program-generating process.

In most work on run-time code generation, speed and safety are primary con-
cerns. We know of no system, other than Jumbo, in which the answers to all the
questions asked above would be “yes.” Consider the question of whether to allow
a fragment to contain a declaration whose scope extends beyond that fragment.
Partial evaluation-based systems [5, 6, 11, 12] possess the “erasure property” —
erasing quotation marks leaves a valid program which is equivalent to the origi-
nal but is not staged. Thus, they follow ordinary scoping rules for declarations,
and the generation process cannot introduce new declarations. Template-based
approaches [11, 13], which construct programs at run-time by combining pre-
compiled fragments, are inherently limited to fragments that generate machine
code; declarations produce no machine code. Other non-partial evaluation-based
system [7, 10] restrict the introduction of declarations to permit faster code gen-
eration.

The design of Jumbo gives precedence to generality, in both its meanings. By
using the same compiler statically and dynamically, we ensure that the dynamic
language is the same as the static one. And by giving each node in the abstract
syntax tree its own semantics, and insisting that any node — even a declaration
— can be left as a hole to be filled in at run time, we ensure the ability to divide
up the program into almost arbitrary fragments.

Thus, by using a single compiler for both static and dynamic compilation,
we lower development cost — there is no extra work beyond writing the one
compiler — and get a system of great generality. On the other hand, we can
then offer no safety guarantees, and suffer from inefficiency at run time. The
latter is the problem we address in this paper.

4

3 Compositional compilation

There would be nothing for us to do — we could achieve our goal trivially
— if we were willing to carry the compiler with us wherever code was to be
generated, or to assume it existed everywhere. We could just emit source code
and invoke the compiler from the running program. However, this approach
is inherently inefficient, and more importantly, is extremely difficult to use in
practice because of portability issues and the fundamental reliance on exporting
source, which many organizations will not do.

Instead, Jumbo works by partially compiling each quoted fragment, produc-
ing a value of type Code. We will give the precise definition of Code shortly.
First, we discuss the structure of our compiler.

The idea of compositionality is that the Code value to which any AST trans-
lates is a function only of the abstract syntax operator at its root and the values
of each of its children. Thus, the compiler is really just a set of definitions of
abstract syntax operators, but with arguments of type Code rather than AST.
Examples are:

Code makeIfThen (Code cond, Code truebranch)

Code makeVariable(int flags, Type type, String name)

Code makeClass(int flags, String name, String supername,

StringList implementees, CodeList members)

This is the essential difference between this structure and a conventional
compilation structure: Instead of creating an AST and then generating JVM
code while traversing it, the abstract syntax operators themselves contain the
code to compile that syntactic construct.

A preprocessing step translates quoted fragments to abstract syntax opera-
tors, in the usual way. For example,1

Code safePointer (Code ptr, Code computation) {

return $< if (‘Expr(ptr) == null)

throw error();

else ‘Stmt(computation) >$;

}

becomes (0 is the code for binary operator “==”)

Code safePointer (Code ptr, Code computation) {

return makeStatements(

makeIfThenElse(

makeBinOp(0, ptr, nullConstant()),

makeThrow(makeSelfInvocation("", "error", new List())),

computation));

}

1 The syntactic category names are needed to allow parsing of holes within fragments.
The holes are replaced by special names — unknownExpr, unknownStmt, etc. — before
parsing. Zook et al. [14] describe a way to eliminate these using context-sensitive
parsing, but we have not yet implemented their technique in Jumbo.

5

This program is now statically compiled — that is, as an ordinary Java
program. The calls to the abstract syntax operations are part of the program and
will be elaborated at run time, after the holes have been filled in. In particular,
at run time, Code values will be provided for the arguments to safePointer,
and the returned expression will be evaluated.

Eventually, this Code value will be placed inside the Code value for a com-
pilation unit, and be ready for the final step of compilation — generating Java
.class files containing JVM code. The method void generate () performs this
final step. Alternatively, Object create (String classname) calls generate,
and then loads the class file and returns an object of the class. generate is
for when Jumbo is used for off-line program generation, and create for true
run-time program generation.

We have achieved our goal of allowing for partial compilation even for frag-
ments of programs: the compilation of any fragment, compile(A), is its Code
value, obtained by evaluating the expression to which the fragment is translated
by the preprocessor. Holes are handled with no special effort — they are just
expressions within this larger expression which do not happen to be explicit calls
to abstract syntax operations. Mathematically, we can regard a fragment with
a hole, P [·], as being compiled to a function from Code to Code:

compileWithHole(P[·]) = λC : Code. compile(P[A])
where A is any fragment such that compile(A) = C.

Compositionality ensures that this function is well defined.

4 Jumbo

As discussed in [15, 16], there are many choices for the Code type. A degen-
erate version of compositional compilation is to make Code be AST’s, and let
generate do all the work. In Jumbo, our goal is to put as much meaning as
possible into Code, leaving generate very simple. The most natural way to do
this is to make each Code value a function taking the compilation context (or
“environment”) to JVM code. This is how compositionality is achieved in defin-
ing abstract meanings of programs in denotational semantics [17], and it works
just as well when “abstract meaning” is replaced by “compilation.”

In Java, the situation is a bit more complicated, but for the most part we
follow this idea. Code values are represented by objects having a single method,
plus some additional information:

Code = ExportedDefinitions × (Environment → ClosedCode)

ExportedDefinitions = (ClassInfo + MethodInfo + FieldInfo)

Environment = stack of (ClassInfo + MethodInfo + LocalInfo)

ClosedCode = JVM code × integer × integer × VarDecls × Value

6

The first component of Code is the declarations exported from the code frag-
ment. The second is the function we have been referring to above, which we
call eval; it does the actual translation to JVM code. Exported declarations are
just that: declarations that are in scope outside of this fragment. Based on the
exported declarations of a class’s members, the class can create a fairly complete
record of its contents, and that record (a ClassInfo) will be its exported declara-
tion. The eval method is given an environment containing all enclosing classes,
methods, and variables, and then generates code. The two integers in Closed-
Code give the next available location for local variables and the gensym seed,
needed to assign unique names to anonymous classes. The VarDecls value carries
the local variable declarations of that code fragment. The Value field gives the
constant value of an expression, if it has one; the Java language definition [18,
section 15.27] requires this.

In the implementation, Code is an abstract class with two methods: Declara-
tionList getDecls (), and ClosedCode eval (Environment).

The definition of Code is quite a delicate one, and we have gone through
several iterations. The current definition is parsiminious in the sense of having
as few components as we think is possible. We now explain briefly why this
definition works. In Java, names fall under two scope rules: names defined within
a method — local variables and inner classes — are in scope in statements that
follow the declaration (“left-to-right” scope), while names defined in a class —
fields and inner classes — are in scope everywhere within the class (with the
exception that fields are not in scope in their own initializers). The exported
definitions in Code are used to create the latter part of the environment; the
environment passed into the eval function of the methods of a class contains all
the fields and inner classes of that class. Names with left-to-right scope are passed
along in the environment from one statement to the next, using the VarDecls
in ClosedCode. Thus, the eval function for each statement gets an environment
containing all the names in scope at that statement.

(Aside to Java experts: This definition is actually a little bit too parsiminous,
in that it does not allow a proper treatment of free variables in inner classes.
The rule about inner classes is that each variable captured by an inner class
becomes a field of the inner class, and the constructors of the inner class must
assign the variable to its corresponding field. The question is, how do we know
which variables are actually used in an inner class? This information does not
come from the exported definitions of the inner class, since references are not
definitions, nor is it passed “left-to-right.” We finesse this problem by assuming
that all variables in scope in an inner class are referenced in that class. This
gives a correct, but obviously non-optimal, implementation of inner classes. An
earlier version of Jumbo had an additional “pass” — that is, another method
in Code — whose purpose was to gather free variable references in classes; we
removed it for reasons discussed in Section 7.)

So, our task comes down to this: In a Jumbo program, sections of quoted
code become expressions of type Code. At run time, these expressions will be
evaluated, producing a Code object whose getDecls and eval functions will

7

then be invoked. We wish to optimize this entire process, but mainly the eval
function of each Code value, since this is where most of the compilation occurs.

5 Source-level optimization of Java

In this section, we describe the optimizations we apply. These take the form of
source-level transformations, including method inlining, constant propagation,
and various simplifications.

At present, these optimizations are not all applied automatically. A number
of transformations are “contractive” — simply put, they never make things worse
— and they are applied repeatedly in a “clean up” process. Others — such as
inlining — are potentially dangerous, in that they can lead to code expansion,
and the system must be told to perform them. (The user interface highlights
all inlinable methods and constructors, and the user clicks on the method name
to inline it.) We intend to explore methods of automating the entire process in
future research.

The transformations are mainly standard and will be described only briefly.
We emphasize that all are valid transformations in Java. The idea is not to build
an optimizer specific to our compiler, but to use the logic of Java to optimize
it. On the other hand, the specific choice of analyses and transformations was
made with knowledge of the compiler.

To simplify rewriting, we first normalize the code. There are three main parts
of the normalization step:

FQCN: Converts every name to its fully qualified version. For instance, a
field access x becomes this.x, and a field declaration Code c; becomes
uiuc.Jumbo.Compiler.Code c;. (uiuc is our university’s domain name, so
it is the root of package names that reside here.)

For-While: Converts for-loops to while-loops. Also, each while-loop’s condition
is replaced by true and taken inside the loop. The flow goes out of the loop
with a break-statement.

Flattening: Breaks complex expressions into simpler expressions. For instance,
after this step, all the arguments going into a method call will be simple
variables.

We can then apply the following rewrites. All must be applied “manually”
— that is, by explicitly requesting the rewriting engine to apply them. However,
Cleanup incorporates many of them in a fixpoint iteration; those are not normally
invoked manually.

Inlining: Inlines a method invocation. Replaces return-statements of the inlined
method with break-statements.

WhileUnroll: Unrolls the first iteration of a specified while loop.
AnonClassConvert: Converts anonymous classes to non-anonymous inner classes.
ConstructorInlining: This transformation is described below.
Unflatten: Transforms the flattened program to a form that is more readable.

8

Cleanup: Runs the following rewrites in a fixpoint iteration. Each can be in-
voked manually, but there is little reason to do so.
Untupling: Extracts a field from a newly created object.
UnusedDecl: Removes declarations that are never used.
UnusedScope: Removes scopes that have no semantic significance.
UnusedDef: Removes variable definitions that are not used.
UnusedReturn: Eliminates assignment of a method call when the assigned

variable is not used. The method call must still be executed for its side
effects.

IfReduction: Simplifies if-statements whose condition is a constant boolean.
Arithmetic: Simplifies constant-valued arithmetic and logic expressions.
UnusedBreak: Removes break statements that make no difference to the

flow.
ConstantPropagation: Moves constant values through local variables.
CollapseSystemCalls: Collapses intern and equals calls made on Strings.
ArrayLength: Replaces array.length expressions with the length, if avail-

able.
Switch: Reduces constant switch statements to the match.
CopyAssignment: Propagates redundant assignments of variables and lit-

erals.
UnusedObject: Removes object creation statements if they are never used

and side-effect-free.
FieldValue: Propagates values through object fields assigned directly.
TightenType: Makes types more specific, if possible.
UnusedFieldAssign: Removes unused assignments to fields.
UnreachableCode: Removes code which is indicated to be unreachable by

the flow analysis.
ObjectEquality: Replaces (obj1 == obj2) with true, and (obj1 != obj2)

with false, if it can determine whether the two objects point to the same
location; and vice versa.

PointlessCast: Removes cast expressions where the target of the cast is
already the right type.

WhileReduction: Removes while statements which only have a break as
the body and/or false as the condition.

InstanceOf: Attempts to resolve instanceOf expressions.
NullCheck: If it can prove that an object o is not null, then replaces o !=

null with true and o == null with false; and vice versa.

These rewriters use the information obtained from program analyses. The
analyses are Dominator, Flow, Use-Def and Alias. The first three are stan-
dard. Our alias analysis is described in [19].

5.1 Constructor Inlining

Most of our transformations and analyses are strictly intra-procedural. This
makes inlining very important for exposing opportunities for optimization. Con-
structors cannot be inlined like methods, because there is no notation to create

9

an uninitialized object in Java; this is an implicit effect of each constructor. (If
we were optimizing JVM code instead of source, this would not be a problem.)
We might try to use the zero-argument constructor for this purpose, but it might
have an explicit definition that conflicts with the definition of the constructor we
are attempting to inline. We solve this problem by adding annotations, contain-
ing the statements of the constructor, to object creation sites. Other rewriters
then see the constructor code as though it was just an inlined method. The
constructor itself, which resides in a separate class, cannot be optimized, but
values propagated out of it can be used in the calling program. The annotations
must be removed before the optimized program is written; for this reason, the
annotations must have the property that they can be removed at any time and
leave a program with the same meaning as when they were there.

6 Examples

We demonstrate the effect of our optimizations via three examples. The first is
a complete (but small) class, without holes. The other two are the classic (in the
field of program generation) exponentiation function, and a program to generate
finite-state machines.

For each example, we show the original program, with quoted fragments.
The latter will be preprocessed away and transformed to calls to abstract syntax
operators, as described in Section 3. The resulting program is an ordinary Java
program that will be compiled into JVM code and executed. At run time, the
various Code values produced by these expressions will be brought together to
form a Code value representing a class. A call to generate or create will turn
this Code value into a Java .class file. In our examples, we are not executing
the generated programs, since we are interested only in code generation time.
In each test, we let the virtual machine “warm up” — load the Jumbo API,
java.lang, and other classes — before executing the programs, then run each
test 500 times. Our measurements exclude I/O time for outputting the .class
file.

To obtain the optimized versions of the programs, each quoted fragment is
optimized, in isolation, after it is preprocessed, using the rewritings described in
the Section 5.

For each run — original or optimized — we measure the overall time, and
we also measure the time spent in the method Class.forName. This method
does the run-time look-up for names used but not defined in the program (for
example, classes defined in imported packages). It consumes such a large portion
of run-time compilation time — more than 50% in most cases — that its effect on
speed-up is often substantial. Furthermore, these calls are impossible to eliminate
by any static optimization, since the imports must be elaborated on the target
machine (i.e. at run time). Since this cost is specific to Java, it is interesting to
see what speed-up we would be getting if this cost could be ignored.

The tables in this section have two columns for each of three different Java
virtual machines: Sun’s HotSpot, Kaffe (an open source VM), and IBM’s pro-

10

duction VM. (HotSpot is included because it is the the most widely used virtual
machine, but none of the three is distinctly better than the others, nor is any of
them the “definitive” virtual machine.) For each VM, we give the overall execu-
tion time and the execution time excluding forName calls; these are the “w” and
“w/o” columns, respectively. The tables have three rows: unoptimized time, op-
timized time, and speed-up ((unoptimized time - optimized time) / unoptimized
time).

The timings are in seconds. Tests were run on an AMD Duron 1GHz proces-
sor, with 790 MB of memory, running Debian Linux.

6.1 Simple class

To get a kind of baseline, we show the results of optimizing a complete, but
simple, class. The tests just invoke generate on this code:

$<

public class Temp {

int x;

int id() {

return 12;

}

}

>$

When presented with a complete class without holes, the rewriters ought to
be able to reduce it to a very efficient form. However, the speedups are not as
great as we would hope. (In the case of the IBM JVM, the rewriting actually
produced a slow-down.) Reasons for this are discussed in Section 7.

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 0.46 0.44 0.79 0.76 0.42 0.41

Rewritten 0.40 0.38 0.66 0.64 0.47 0.46

Speed-up 13.0% 13.6% 15.2% 15.8% -11.9% -12.2%

Table 1. Run-time generation performance for the simple example.

6.2 Exponent

The exponentiation function generator creates a function that computes xn for
given value of n. Table 2 gives the performance of the original and rewritten
programs.

11

interface ExpClass

{ public int exponent(int x); }

public class Power {

public static ExpClass getExp(int n) {

Code r = $<1>$;

for(int i = 0; i < n; i++){

r = $<‘Expr(r) * x>$;

}

String cname = "Power"+n;

Code expcl = $<

public class ‘cname implements ExpClass {

public int exponent(int x) {

return ‘Expr(r);

}

}

>$;

return (ExpClass)expcl.create(cname);

}

}

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 2.79 0.98 2.45 1.29 4.55 2.98

Rewritten 2.70 0.89 2.36 1.09 4.19 2.63

Speed-up 3.2% 9.2% 3.7% 15.5% 7.9% 11.7%

Table 2. Run-time generation performance for the Exponentiation example.

6.3 FSM

Another application of RTPG is generation of finite state machines (FSM). Table
3 gives the program generation timings for this example.2

The example is discussed in [3] and here we give its main class. Due to space
considerations, we do not give the source of other classes. (ArrayMonoList is
just a type of list; here it is used to collect all the cases in the switch statement
that is the heart of the FSM implementation.)
2 It is notoriously difficult to understand the performance of Java virtual machines, and

Table 3 is an example. The calls to forName are a large percentage of the execution
time on all VMs. Furthermore, these calls are identical in optimized and unoptimized
code. Yet speed-ups in two cases actually decline when forName is discounted. This
is because, even though optimizations do not touch this method, it runs faster in
the optimized than in the original code. We have, at present, no explanation for this
behavior.

12

public class FSM {

String FSMclassname;

State[] theFSM;

FSM (String c, State[] M) { FSMclassname = c; theFSM = M; }

Code genFSMCode () {

ArrayMonoList body = new ArrayMonoList();

// Each state corresponds to a case in the switch statement

for (int i=0; i<theFSM.length; i=i+1){

body.addAll($<case ‘Int(i):

‘Stmt(theFSM[i].genStateCode("ch"))

break; >$);

}

Code result =$<

import java.util.*;

public class ‘FSMclassname {

static void runFSM (StringTokenizer in) {

int theState = 0;

while (true) {

char ch;

if (!in.hasMoreTokens()) return;

ch = in.nextToken().charAt(0);

switch (theState) {

‘Case(body)

default: return;

}

}

return;

}

static void addToBuffer(char ch){ ... }

static void emitbuffer(){ ... }

public static void main (String[] args) {

String input = ...; // obtain input from console

runFSM(new StringTokenizer(input));

}

}>$;

return result;

}

}

The constructor of this class takes a finite-state machine description in the
form of an array of states; the client sends the genFSMCode message to that
object and then invokes generate on the result. The created class contains a
main method that reads a string from the console and runs the client’s FSM on
it.

13

We haven’t shown an FSM description due to space limitations, but to give
a general idea, an FSM description is a set of states, and each state is a set of
transitions. Here is the definition of a single transition.

new Transition(new Predicate1 (), 1, new Action2 ())

where

class Predicate1 implements Predicate {

public Code pred (String ch) {

return $<(’a’ <= ‘ch && ’z’ >= ‘ch)

|| (’A’ <= ‘ch && ’Z’ >= ‘ch)>$;

}

}

class Action2 implements Action {

public Code action(int s, String ch) {

return $<addToBuffer(‘ch);>$;

}

}

This transition, if it sees a letter, goes from its current state to state 1 and puts
the letter into the buffer.

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 13.10 4.93 14.01 8.82 8.92 3.89

Rewritten 12.25 4.76 13.48 7.78 8.37 3.70

Speed-up 6.5% 2.9% 3.9% 11.8% 6.2% 4.9%

Table 3. Run-time generation performance for the FSM example.

7 Lessons learned and future work

Compositional compilation can be applied to any language, yielding a compiler
that supports run-time program generation (once the quotation/anti-quotation
syntax is added). Each language will present different issues, both in construction
of the compiler and in optimizing run-time program generation. Java is in some
ways highly suitable for this treatment. Because it has no preprocessor and no
optimization pass to speak of, most of the compiler consists of a translator from
AST’s to low-level code — the process to which compositionality applies most
naturally. But in another sense, Java is too dynamic; some compilation steps must
be performed dynamically that, in other languages, can be performed statically.
Obviously, anything the must be done at run time cannot be optimized away. In
this section we discuss why we have not gotten better speed-ups, and our future
plans.

14

7.1 Optimization Problems

The major issue blocking rewriting is resolution of class names. The Java def-
inition requires that these names be resolved on the target machine. Thus, for
example, the test to determine if a method override is legal — which must be
done for every method — cannot be eliminated, because the superclass is avail-
able statically only in the rare case when it is defined in the quoted fragment
itself.

Similarly, the normalization of class names (conversion of a short class name
to a fully qualified class name) for variable, field, and method declarations must
be done dynamically. This necessitates that the fields keeping track of type
information be mutable: The objects containing those fields are the class and
method objects created by getDecls, but normalized class names cannot be
filled in until eval is called. Moreover, these objects are returned from getDecls
to generate, so unless the fragment being optimized is in a place where the
generate call can be inlined — which it usually is not — the class and method
information have to be considered to have “escaped.” Propagating information
through mutable fields of objects that escape is very difficult.

One result is that the optimized code generator still contains type checks
which we would initially have expected could be eliminated, such as a check for
the validity of the return statement in $<int foo() { return 5; }>$.

Even if the fragment being optimized consists of a complete class, it is possi-
ble that the consumer of the fragment will compile it in a larger context: adding
import statements, adding sibling classes, or making it an inner class. Not know-
ing this context causes more class name resolution problems. For example, if an
enclosing class contains a field named ”java”, then ”java.lang.Object” repre-
sents a series of field lookups, not a fully qualified class name, Having an explicit
create or generate call available in the code being optimized resolves this dif-
ficulty, because it tells us that the fragment we see will not be placed in any
larger context. However, as noted above, this will not normally be the case.

7.2 Next steps

We have continually refined our compiler in two ways. One is reducing the num-
ber of “passes” — that is, the number of functions in Code. The idea is that
putting more work in a single pass makes more information available locally;
with multiple passes, each called from generate, the connection from one pass to
another cannot be inferred except in those cases where we can see the generate
call and inline it. As mentioned in Section 4, the current structure is as compact
as we think is possible.

The other refinement is making the fields in the compiler’s classes final. There
is a bit more we can do along these lines.

More broadly, however, Java fundamentally limits optimizations because of
the requirement to locate classes dynamically. This entails run-time calls to
forName; in one case — the exponentiation example in HotSpot — forName
consumes 65% of run-time compilation time. We have also noted above how

15

dynamic class locating has a cascading effect: it requires that certain fields be
mutable, which in turn diminishes our ability to statically determine their values.

It would be an interesting exercise to see what we could achieve if we as-
sumed that imported classes could be looked up at compile time. But Jumbo
is a compiler for Java, not an idealized or subsetted version of Java, and we
do not want to change that. Nor would this be a simple experiment: we have
pointed out in this section how this property of Java has pervasive effects in the
compiler; vacating this property would have correspondingly pervasive effects.
So, our current thinking is that it may be time to apply our approach to a more
conventional, less dynamic, language like C, and this is an avenue we are actively
exploring.

8 Conclusions

We have shown how source-level optimizations can improve the performance of a
program generation system based on the principle of compositional compilation.

The Jumbo compiler was first publicly released in 2003. We began the current
study from (the newest version of) that compiler, but found that composition-
ality alone was not enough to permit optimization. We rewrote the compiler to
be (a) more compositional — where the first definition of Code contained four
functions, the current one has two — and (b) more functional in style, making
greater use of final fields. It seems reasonable to us that, since RTPG can offer
very significant performance advantages, the compilers to support it might be
written so as to allow for more efficient code generation. In any case, in our fu-
ture development of Jumbo, we will think of it as a process of co-design: writing
optimizations that apply to the compiler, and modifying the compiler to make
the optimizations applicable.

Though our speed-ups are still modest, we consider our results encouraging.
There remain possibilities for further rewriting, even in Java, and we fully expect
to see better results as we develop both the optimizations and the compiler. We
are also exploring the application of our ideas to other, more static, languages.

9 Acknowledgements

We thank the reviewers, who provided numerous helpful comments on this paper.

References

1. Kamin, S., Clausen, L., Jarvis, A.: Jumbo: Run-time Code Generation for Java and
its Applications. In: Proc. of the Intl. Symp. on Code Generation and Optimization
(CGO ’03), IEEE Computer Society (2003) 48–56

2. Clausen, L.: Optimizations In Distributed Run-time Compilation. PhD thesis,
University of Illinois at Urbana-Champaign (2004)

16

3. Kamin, S.: Routine Run-time Code Generation. In: Companion of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03), ACM Press (2003) 208–220 Also ap-
peared in: SIGPLAN Notices, vol. 38 (2003), pp. 44-56.

4. Kamin, S.: Program Generation Considered Easy. In: Proc. of the 2004 ACM SIG-
PLAN Symp. on Partial Evaluation and Semantics-based Program Manipulation
(PEPM ’04), ACM Press (2004) 68–79

5. Taha, W., Sheard, T.: MetaML and Multi-stage Programming with Explicit An-
notations. Theoretical Computer Science 248 (2000) 211–242

6. Taha, W., Calcagno, C., Leroy, X., Pizzi, E.: MetaOCaml. (http://www.
metaocaml.org/)

7. Engler, D.R., Hsieh, W.C., Kaashoek, M.F.: ’C: A Language for High-level, Effi-
cient, and Machine-independent Dynamic Code Generation. In: Proc. of the 23rd
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL
’96), ACM Press (1996) 131–144

8. Poletto, M., Hsieh, W.C., Engler, D.R., Kaashoek, M.F.: ’C and tcc: A Language
and Compiler for Dynamic Code Generation. ACM Transactions on Programming
Languages and Systems 21 (1999) 324–369

9. Poletto, M., Engler, D.R., Kaashoek, M.F.: tcc: A System for Fast, Flexible,
and High-level Dynamic Code Generation. In: Proc. of the ACM SIGPLAN 1997
Conference on Programming Language Design and Implementation (PLDI ’97),
ACM Press (1997) 109–121

10. Oiwa, Y., Masuhara, H., Yonezawa, A.: DynJava: Type Safe Dynamic Code Gen-
eration in Java. In: The 3rd JSSST Workshop on Programming and Programming
Languages (PPL2001). (2001)

11. Consel, C., Lawall, J.L., Meur, A.F.L.: A Tour of Tempo: A Program Specializer
for the C Language. Sci. Comput. Program. 52 (2004) 341–370

12. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: an expressive
annotation-directed dynamic compiler for C. Theoretical Computer Science 248
(2000) 147–199

13. Hornof, L., Jim, T.: Certifying compilation and run-time code generation. In:
Partial Evaluation and Semantic-Based Program Manipulation. (1999) 60–74

14. Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ Programs with Meta-
AspectJ. In Karsai, G., Visser, E., eds.: Proc. of the Third Intl. Conf. on Generative
Programming and Component Engineering (GPCE 2004). Volume 3286 of Lecture
Notes in Computer Science., Vancouver, Canada, Springer (2004) 1–18

15. Kamin, S., Callahan, M., Clausen, L.: Lightweight and Generative Components-
1: Source-Level Components. In: Proc. of the First Intl. Symp. on Generative
and Component-Based Software Engineering (GCSE ’99), Springer-Verlag (2000)
49–64

16. Kamin, S., Callahan, M., Clausen, L.: Lightweight and Generative Components-2:
Binary-Level Components. In: Proc. of the Intl. Workshop on Semantics, Appli-
cations, and Implementation of Program Generation (SAIG ’00), Springer-Verlag
(2000) 28–50

17. Stoy, J.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. The MIT Press (1977)

18. Gosling, J., Joy, B., Steele, G.: The Java Language Definition. Addison-Wesley
(1996)

19. Morton, P.: Analyses and Rewrites for Optimizing Jumbo. Master’s thesis, Uni-
versity of Illinois at Urbana-Champaign (2005)

