
Program Generation Considered Easy
Invited Talk

Sam Kamin*
Computer Science Department

University of Illinois at Urbana-Champaign
+1 (217) 333-7505

kamin@cs.uiuc.edu

ABSTRACT

Programmers frequently write program generators using the
simple model of programs as text. The essence of this approach is
its lack of structure. For this reason, it gets no respect from
academic researchers. But the flip side of lacking structure is
freedom from restrictions. We argue that the latter is important,
and perhaps essential, in finding a willing audience for program
generation among working programmers. Jumbo is a system for
producing run-time program generators, which is designed to
offer the programmer a “programs as strings” model to as great an
extent as possible, though some constraints are inevitable. We
show by several examples that these constraints still allow for
both a natural and a powerful program generation model. We
then discuss how the approach taken by Jumbo, though possessing
less structure than some competing methods, still raises scientific
problems that ought to be of interest to researchers in this area.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation.

General Terms
Languages.

Keywords
Run-time code generation; Java.

1. INTRODUCTION
Programmers frequently write program generators using the
simple model of programs as text. Much experience shows that
this method is often efficacious and is not overly difficult.
However, it gets no respect from academic researchers. It is
perhaps a perfect example of the academic’s nemesis: something
that works in practice but doesn’t work in theory.

In truth, virtually all program generation systems appeal, at some
intuitive level, to this model. It is difficult to imagine how a
programmer would build or understand a program generator
without being able to picture the programs it generates. However,
the systems are always enriched in some way, with some structure
and, accordingly, some restrictions. The essence of the “programs
as strings” model is freedom from constraints.

Jumbo is a Java compiler incorporating a code-quotation
mechanism. It allows programmers to easily create both compile-
time and run-time program generators. Its code quotation
mechanism is unusual in its generality: virtually any Java program
or program fragment can be quoted, and virtually any part of a
program can be left as a parameter for the program generator.
This makes for a natural, easy-to-learn, and powerful mechanism.

Jumbo attempts to adhere to the programs-as-strings model as
much as possible, because of its simplicity. But it cannot follow it
perfectly because the pure programs-as-strings model is inherently
compile-time. Jumbo’s purpose is to allow for the creation of
run-time program generators. Thus, there are restrictions: For
one, only syntactically coherent parts of a program can be
abstracted. More significantly, only string construction is
permitted, not string destruction. This restriction seems to us
essential if the generated programs are to be compiled in advance,
rather than simply invoking a compiler at run time.

In this paper, we demonstrate first that Jumbo still follows the
string model closely enough that it is easy to write program
generators with little training. We show this by giving several
examples, each consisting of a sequence of program generators
for a single domain. The first element of each sequence is so
simple that a Java programmer could write it in just a few
minutes; the most complex might take a couple of hours. The
domains are: literate programming; object-oriented programming
patterns; and Huffman coding.

Following these examples, we contrast the Jumbo approach with
other program generation methods and discuss some areas of
application that we think are of potential interest for the program
generation community. Lastly, we make the case that the Jumbo
approach to program generation, while perhaps lacking some of
the interesting theoretical properties of other approaches,
nonetheless provides enough structure to raise interesting
scientific questions; in this way, we hope to interest other
researchers in our methodology.

2. JUMBO
Jumbo is a compiler for a “two-level” version of Java. It permits
the programmer to specify code to be generated using a
quote/anti-quote syntax similar to that of MetaML [18]. A
fragment of Java code within brackets $< and >$ represents a
value of type Code. Within those quotations, an expression of the
form `(expr) or `syntax-category(expr) causes the expr
to be evaluated and its value, which must be of type Code, to be
spliced into the quoted code. (These antiquated expressions are

*This work was partially supported by NSF grant CCR-0306221.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PEPM'04, August 24-25, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008...$5.00.

sometimes called “holes;” they are the parts of the code that will
not be known until program generation time.) The syntax
category, which is needed just for parsing purposes, represents the
type of fragment that is expected at that position in the code; Expr
and Stmt are the most common cases. (Occasionally, syntax
categories are used in the quotes themselves: $syntax-
category< … >$.)

As a simple example, here is the famous power function example:

 interface PowerFun { int pow (int x) ; }

 static Code genPowerBody (int n) {
 return (n==0) ? $< 1 >$
 : (n==1) ? $< x >$
 : even(n)?
 $< sqr(`Expr(genPowerBody(n/2))) >$
 : $< x * `Expr(genPowerBody(n-1)) >$;
 }

 static Code genPowerClass (int n) {
 return $< public class PowerClass
 implements PowerFun {
 public int pow(int x) {
 return `Expr(genPowerBody(n));
 }} >$;
 }

A client calls genPowerClass(k) and gets back a Code object,
say powCode. It can then do one of the following

 powCode.generate();

 or PowerFun p =
 (PowerFun)powCode.create(“PowerClass”);
 … p.pow(arg) …

The generate call creates the PowerClass .class file and
leaves it for later use. The create call does this, but then creates
an object of the generated class. Generally speaking, generate
is for compile-time uses and create is for run-time uses. (The
PowerFun interface is needed only for run-time uses.)

The quotation syntax works, intentionally, much like ordinary
string quotation. Any Java code can be quoted in this way. In
addition to the syntax categories like Expr and Stmt that can be
used in antiquotes, categories Int, Double, Char, and so on, are
used to “lift” values of the corresponding type into generated
code. That the result is a value of type Code rather than String
should be transparent to the programmer, except in that it implies
the restriction mentioned in the introduction: Code values can be
constructed by quotation and splicing, but cannot be destructed.

The basic idea behind Jumbo is compositional compilation. The
crucial point is that the abstract syntax operations of the Jumbo
API are the compiler. Unlike an ordinary compiler, in which the
syntax tree is a passive data structure upon which the compiler
operates, the Jumbo operators are genuine functions that perform
compilation. This is called a compositional compiler because the
compilation of each language construct is a function only of the
compilation of its sub-constructs, which is a very different
structure from conventional compilers. The advantage is that any
particular piece of syntax can be easily abstracted from and filled
in at a later time.

3. LITERATE PROGRAMMING
Literate programming is an idea introduced by Donald Knuth [11]
in 1984. He argued that programs should be readable as text, and
then famously backed up the argument by publishing the
implementations of TEX and Metafont [12,13]. Unable to
effectively present his programs within the constraints of ordinary
program structure, he wrote his programs in a flattened format,
called a web, using links to connect composite program parts to
their constituents. Within this flattened format, sections could be
defined and comments written, making it read like a sequential
narrative. A program called a “weaver” turned the web into a
nicely typeset document, with table of contents, index, cross-
references, and section headings. Another program, called a
“tangler,” extracted the program text from the web and put all the
fragments in their correct places so that the program could be
compiled. (See www.literateprogramming.com for the latest
on literate programming.)

This may seem an odd place to begin a discussion about program
generation, but one of the primary goals of program generation –
compile-time program generation, at least – is to improve
program structure. This goal is sometimes implicit, but it is
always present, even when improvements in efficiency appear to
be the driving motivation. After all, the program being generated
could be produced by hand. But this would involve extra work
and, more importantly, would obfuscate the program.

Thus, program generation is, in large measure, an approach to the
age-old software engineering problem of making programs more
transparent. These were also Knuth’s goals in the invention of
literate programming.

In any event, the role of the tangler in literate programming is
fundamentally program generation. Accordingly, we produce a
version of literate programming in Jumbo. We cannot produce a
weaver, as we have no way to produce anything but compiled
programs. On the other hand, the generality of Jumbo will allow
us to go beyond standard literate programming in the presentation
of program structure, as we will see.

We illustrate with an example by Cordes and Brown [4]: a
program to print the first 25 Fibonacci numbers. Figure 1 is the
web for this program1; it is drawn from Figure 8 of [4], but
modified to produce Java instead of C code (some minor
modifications, such as shortening the comments, were made to
save space). The tangled program is shown in Figure 2. (The
woven – i.e. typeset – version of the program is not shown here,
as we are not attempting to produce a weaver.)

We trust that Figures 1 and 2 need no extensive explanation.
There is perhaps one notation that is not obvious: on lines 14 and
17 we see “@<Main variable declarations@> =” and
“@<Main variable declarations@> +=”, respectively. In
all other cases, we just see “=”, meaning that the earlier
appearance of the placeholder is to be replaced by the code that
follows. The “+=” notation indicates that we are adding code to
that already substituted for the placeholder.

1 All figures appear at the end of the paper.

The Jumbo version of this web is shown in Figure 3. Each
fragment of code is represented by a function. (We cannot simply
assign these code fragments to variables, as every reference to a
variable would appear before its definition.) Aside from some
additional boiler-plate in each code section, we have fairly
reproduced the structure of the original web. (The careful reader
will note that we have not reproduced the behavior of the “+=”
operator. We will address this at the end of this section.)

Figure 3 is the entire program. Jumbo itself acts as the tangler.
Jumbo does not produce source code, but if it did, it would be
exactly the same source code as is shown in Figure 2. That is, the
JVM code it produces is just what a Java compiler, such as
javac, would produce from the code in Figure 2.

In Jumbo, we can give another version of the program, one we
consider even more “literate” than the first. Literate programming
permits the physical structure of the program to be presented in a
readable form, by flattening it into a sequential narrative.
However, the logical structure – the way the programmer would
explain the program – may be quite different. In this program,
one could argue that the real heart of the matter is the body of the
loop. This suggests an entirely different “layout” of the program.
This alternative presentation is given in Figure 4. We again trust
that this “web” is sufficiently clear to require no lengthy
explanation. The program that Jumbo produces from this input is
nearly identical to that generated by the previous examples: we
moved the initializations of fib1 and fib2, as their new positions
seem to follow the logic of this presentation more closely, and
used a generated name instead of count, so as to properly
implement a “repeat” construct. Note how this presentation
highlights the loop body, and also keeps all the termination logic
together. (We have also abstracted out the print function, making
it easier to modify. This could always be done by procedural
abstraction, but the idea here is to preserve the program while
changing only its presentation; adding another procedure would
be changing the program.)

We return now to the problem of implementing the += operator.
The problem is to add new declarations to the declaration section
at will, without having an explicit hole for each declaration. This
cannot be done directly in Jumbo, as all abstractions of code are
explicit. However, we can accomplish this by ordinary
programming: declare a Code variable decls, and whenever a
new declaration is needed, at it to decls by side effect:

 decls = $< `Stmt(decls) … new declaration … >$;

In the end, put decls into the (single) hole created for it. For
space reasons, we cannot show this entire version. But the point
is that this problem can be handled by the ordinary programming
facilities available in Java.

Aside from some notational awkwardness, we have a system that
emulates literate programming, and even generalizes it. We do
not have a weaver (although the main contribution of the weaver –
providing cross-referencing and indexing – could be provided by
a Java cross-referencing tool, of which several exist).
Nonetheless, for a quick and easy – and extensible –
implementation of literate programming, it’s not bad!

4. OBJECT-ORIENTED PATTERNS
Object-oriented patterns [7] are useful programming idioms
related to the structure of classes and class hierarchies. Patterns
are not formally defined, like programs, or even very closely
defined, like algorithms. Rather, they are fairly general ideas
about how to write programs. Thus, for any given pattern, the
variety of programs that can be said, correctly, to employ that
pattern is very large. Any attempt to program patterns as program
generators must therefore reckon with the impossibility of writing
a “complete” implementation of the pattern – if that phrase even
has any meaning.

Nonetheless, implementing patterns is a natural and desirable
thing to do, for the usual reasons: avoiding duplication of effort,
ensuring high quality, enforcing standards, etc. Little program
generators are one solution to the quandary. Instead of attempting
to write a program generator that handles every possible instance
of the pattern, we can write a version of the pattern for our
particular problem. If it turns out that our version is not general
enough, we have the same recourse as with any other program:
fix it. This is practical because most uses of patterns are not hard
to program; it is only the attempt to program them in great
generality that is difficult.

We illustrate with a sequence of implementations of the Proxy
pattern [7]. This pattern is used when an object needs to have its
behavior altered in some way; another object, or proxy, can be
used in its place, delegating operations to the original object
(called the subject) as necessary. Subclassing is one way of
implementing the Proxy pattern, but it is not applicable in all
cases, and it is generally assumed in discussions of this pattern
that subclassing is, for whatever reason, not an option.

The implementation of Proxy can be addressed at two levels of
generality: We can create methods of conveniently generating
proxies for classes with a given, fixed interface; or we can create
methods to generate proxies for any interface. In the latter case,
the operations of that interface have to be provided as an
argument to the generator, either explicitly by the programmer, or
by the programming environment, or by reflection.

We will start our sequence of implementations by implementing
proxies in the less general sense. The example is from [8]. The
RequestInt interface consists of three methods: safeRequest,
regularRequest, and unsafeRequest. The proxies “advise”
these methods; that is, they use delegation, but perform actions
before or after the delegation call. Note that there may be several
different proxy implementations of interest – i.e. different kinds of
advice – and the subjects that we want to advise may come from
different classes (all sharing the same interface, of course).

To give the idea of what we’re getting at, we present a proxy in
pure Java in Figure 5. For any object implementing the
RequestInt interface, it adds a counter on calls to
unsafeRequest. The client uses it by calling

 CountingProxy proxy1 =
 new CountingProxy(new Subject());

Whatever methods we write to create proxy implementations, we
should be able to produce a class like this one as one example.

Our first Jumbo implementation provides the proxy builder with a
single method, genProxy, to create the proxy class:

 static Code genProxy (String proxyname,
 MonoList decls, Codefun safeFun,
 Codefun regularFun, Codefun unsafeFun)

The first argument is the name of the proxy class to be generated
and the second is a list containing any new variable declarations
needed by the proxy code. The third, fourth, and fifth arguments
are function objects implementing this interface:

 interface Codefun {public Code apply (Code c);}

These supply the advice for each method – safeRequest,
regularRequest, and unsafeRequest – in that order, by
giving a code-generating function to be applied to the delegation
call. For example, the identity function means the proxy uses
pure delegation and provides no advice. Thus, the code in Figure
5 is produced by these statements:

 Codefun ID = new Codefun () {
 public Code apply(Code call) {return call;}};
 Codefun COUNT = new Codefun () {
 public Code apply (Code call) {
 return $< count++;
 `Stmt(call)
 System.out.println(count); >$;
 }
 };
 Code c = RequestProxyGen.genProxy (
 "CountingProxy",
 $Field< int count = 0; >$,
 ID, ID, COUNT);
 c.generate();

The genProxy method is shown in Figure 6.

Our next version makes this just a little easier, especially in those
cases where most of the methods are to get the same advice.
Here, we put the code functions into a table. The improvement is
that the table has a default value, so that we needn’t mention the
methods that get the standard treatment. In this version, the code
of Figure 5 is produced by these statements:

 CodeMap mods = new CodeMap(ID);
 mods.put("unsafeRequest", COUNT);
 Code c = RequestProxyGen.genProxy(
 "CountingProxy",
 $Field< int count = 0; >$,
 mods);

The function objects ID and COUNT are as above. CodeMap is a
collection class based on Map but allowing for a default value in
the constructor; to save space, its definition is not shown. This
definition of genProxy is given in Figure 7.

Generating proxies for arbitrary interfaces is considerably more
complex. In Java, we can obtain the interface specification by
reflection. In Figure 8, we present a program generator that does
this. To save space, we have omitted the definition of
cvtToType, an uninteresting method that converts Class objects
to objects of the Jumbo class Type.

The proxy writer’s view of the new version of genProxy is
almost the same as above. The code just given is altered only to
the extent of changing the assignment to c:

 Code c = ProxyGenerator.genProxy(
 "CountingProxy", “RequestInt”,
 $Field< int count = 0; >$, mods);

That is, the generator is a generic “ProxyGenerator” instead of
RequestProxyGen, and the interface name is passed as an
argument.

That is as far as we will go with this example. As mentioned at
the start of the section, any implementation of a pattern will
necessarily leave room for improvement. In Jumbo, it was easy to
get started, and what we’ve done can be easily extended.

5. HUFFMAN CODES
Creating run-time program generators2 in Jumbo is just as easy as
creating compile-time generators. Indeed, the program generators
we have presented up to now, though intuitively compile-time,
could be used at run-time (replacing the generate calls with
create calls and adding interfaces as needed). They could even
be used on remote machines. The latter might well be useful. For
example, one could imagine creating and distributing a library of
Jumbo code for literate programming. Run-time use and remote
use are essentially the same: both require the ability to generate
programs without generating source and invoking a compiler.

We present in this section an example of a clear-cut use of run-
time program generation: Huffman encoding. More precisely, we
use program generation to create an efficient decoder for a given
code. The idea is that the code for a particular file or set of files
may be determined dynamically (from a sample of the input), but,
once determined, the decoding process can potentially be
optimized by generating a decoder specifically for that input.

First, a brief primer on Huffman encoding. A Huffman code is a
binary tree whose leaf nodes are labeled with characters, every
character appearing exactly once. The code for a character is just
the path from the root to that character’s node (using 0 for left and
1 for right). To decode a bit string, therefore, is just to follow the
bit string from the root to a leaf note, emit the character, and then
continue from the root again. The construction of the code is the
interesting part, but it is not our concern here.

Assume a type HuffmanTree representing a binary tree, with
fields c (for the character), left, and right, the code to decode a
string of zeroes and ones (for simplicity, we represent this as a
Java string, using the characters ‘0’ and ‘1’ instead of actual bits).

2 We use the term “run-time program generation” (RTPG) in
preference to the more common “run-time code generation”
(RTCG) advisedly. “Program generation” has the connotation of
source-level specification of generated code, under programmer
control, whereas “code generation carries the implication of low-
level programming done by “systems programmers.” We believe
code/program generation should be done at run time, but want to
emphasize that the programmer is fully in control of the process
and determines exactly what will be generated; hence “run-time
program generation.”

Then the following will output the characters encoded in that
string according to the HuffmanTree tree:

 public void decode(String s) {
 HuffmanTree x = tree;
 for (int i=0; i<s.length(); i++) {
 char bit = s.charAt(i);
 if (bit == '0') x = x.left;
 else if (bit == '1') x = x.right;
 if (x.left == null && x.right == null) {
 System.out.print(x.c);
 x = tree;
 }
 }

(This code was obtained from [16].)

Generating the decoder for a given tree is straightforward:

 Code makeDecodeBody () {
 if (left == null || right == null)
 return $< `Char(c) >$;
 else return $< (s.charAt(i++) == '0')
 ? `Expr(left.makeDecodeBody())
 : `Expr(right.makeDecodeBody())
 >$;
 }

 Code makeDecodeClass () {
 return
 $< public class Decode
 implements DecodeInt {
 int i=0; String s; char c;
 public void decode (String s) {
 int l = s.length();
 while (i < l) {
 c = `Expr(tree.makeDecodeBody());
 System.out.print(c);
 }
 System.out.println();
 }} >$;
 }

 The method makeDecodeClass is used as follows:

 Code c = tree.makeDecodeClass();
 DecodeInt d = (DecodeInt)(c.create("Decode"));

In our experiments, the generated code ran an order of magnitude
faster than the original code. We are reluctant to report specific
numbers, both because we have not done extensive testing and
because the Sun Hotspot run-time system is somewhat
unpredictable; thus, our numbers might not be reproducible. In
any case, the point is that run-time generation is easy to do, and
may produce speed-ups. (A more careful performance analysis is
done in [1], where we generate code for serialization.)
Furthermore, regenerating code is also easy: in some
circumstances, it may be advantageous to continue sampling the
input, periodically recomputing the code and regenerating the
decoder; in others, it may be worthwhile to generate a variety of
codes and dynamically choose the one that produces the most
efficient decoder (as is done, for example, for FFT codes in
FFTW [6]). Though still considered exotic, the use of code
generation to gain efficiency in this way could be routine if
appropriate tools existed.

6. PROGRAM GEN. CONSIDERED EASY
We hope the examples we’ve given here convince the reader that
program generation in the Jumbo model – basically, programs as
strings without destructor operations – is straightforward. The
string-based model has advantages that have a direct impact on
the practicality – and popularity – of program generation, and
which we have attempted to preserve in Jumbo:

The entire language is covered. Programmers can have
confidence that any Java program can be quoted and, when
generated, will provide the expected results. It would be much
easier to implement a “sufficiently large” subset of the language,
but that is not enough. Programmers sometimes have
idiosyncratic styles based on the use of some unusual idioms;
having to change that style would be an undue burden. They also
frequently use code that they have imported – and may not even
fully understand – that makes use of a feature not covered in the
subset. (For Java, the obvious example is inner classes; though
exotic, they are used often enough that failure to implement them
would render a Java system unusable for most large Java
programs.)

Holes are permitted nearly anywhere. In a pure string model,
abstraction on any substring in the source code is possible. In
Jumbo, abstraction is confined to syntactically sensible locations
(and some restrictions are imposed as a result of the complexity of
the mapping from concrete to abstract syntax). However, we
avoid other restrictions, such as disallowing abstraction on type
names or declarations. As another example, Smaragdakis and
Batory [17] show why it is useful to abstract on the superclass of a
class definition.

The lack of structure in the string model leads to a variety of
potential problems. For example, one cannot even guarantee that
the constructed program is syntactically correct. (In Jumbo,
fragments must be parsable, but it is possible to build an invalid
abstract syntax tree by inserting the wrong type of subtree under a
node.) But it seems to us that the difficulties do not
fundamentally exceed what one encounters in ordinary
programming; or, to put it another way, the solution to the
possibility of error is careful debugging.

By contrast, other approaches limit the programmer’s control over
the program construction process in fundamental ways. They do
this either to provide programmer support or for efficiency or
both. When used to aid the programmer, such limits are often, in
our opinion, counter-productive, as they force the programmer to
find ways to work around them. When used for efficiency, they
preclude the use of the system for many important applications,
and therefore offer the programmer no help for those applications.
Such restrictions appear in both partial evaluation-based systems
and “heterogeneous” – that is, Jumbo-like – systems:

Partial evaluation systems. We refer here to systems based on the
idea that the programmer writes one program, paying no mind to
staging, and by indicating which of the inputs to the program are
static and which dynamic, enables the system to produce a staged
program automatically. This is the ultimate simplification of the
staging process. However, since the very earliest work on partial
evaluation, it has been clear that “paying no mind to staging” is
impractical. Much of the research in this area has been about

precisely how the programmer can communicate staging
information to the partial evaluator. In the end, massaging the
input to the partial evaluator so as to produce the desired residual
program becomes an art in itself, and we are bound to inquire
whether it is actually easier than specifying the residual program
directly. More fundamentally, partial evaluation systems are
restrictive in the kinds of holes they allow: The only abstractions
available are those already present in the host language, so that
many useful abstractions – on types, class names, and
declarations, for example – are precluded.

`C [5], DynJava [15], CodeBricks [2], et al. These are systems in
which the program explicitly constructs the generated program.
Like Jumbo, all can be regarded as supporting an explicitly string-
based model, up to a point. However, each imposes restrictions
on what can be generated and what holes can be left, primarily to
allow for efficient code generation at run time. We believe that,
while undoubtedly achieving the desired goal of efficient run-time
code generation, these restrictions render these systems
inapplicable for a variety of very important applications; we take
up this theme in the next section.

Aspect-oriented programming as embodied in AspectJ [10] is
often considered a program generation system. Like those
systems, it allows the programmer to divide his program into
small pieces that are assembled prior to execution. However, it
seems to us more helpful to think of AspectJ as a system that uses
program generation rather than one that creates program
generators. The AspectJ weaver incorporates a fixed repertoire of
program generating methods, and does not give the programmer
the capability to produce new program generating methods at all.
As an example of this, the Proxy implementation of section 4 was
inspired by the presentation in [8]; the AspectJ implementation
can be found at www.cs.ubc.ca/~jan/AODPs/. It is interesting to
see the program that is woven from the AspectJ specification.
Although we have no reason to doubt that its behavior is just as
the pattern requires, the program itself bears little resemblance to
the one we produced, which is, we believe, what a programmer
would have expected. This remark is not intended as a criticism
of AspectJ, but simply to draw a contrast between it and the kind
of program generation systems to which Jumbo ought, in our
view, to be compared.

7. USES OF PROGRAM GENERATION
One of the most vexing questions about program generation is:
why isn’t there more of it? Our view is that the tools have not
been available that are both easy enough to use and general
enough to produce a wide range of examples. We do not need a
“killer app” for program generation, because any particular
program generator can be produced by a variety of methods, if the
programmer is determined enough. Rather, we need a facility
allowing program generation to be used routinely by ordinary
programmers [9].

We have emphasized generality in this paper because we believe
that the compelling applications for program generation are not
likely to be the first-order, “value-based optimization”
applications which most systems can accommodate well. Indeed,
in our experience, it is difficult to find examples for which such
optimizations are really compelling. There is almost always a
way to preprocess the static data that does not involve program

generation; being able to employ a regular compiler that can
optimize code at leisure gives a huge advantage over code
generated at run time under severe time constraints.

In our view, the important applications for program generation –
especially, run-time program generation – will be those in which
it is used to achieve modularity. The combination of mobile
computing – in which different parts of a program are obtained
from different locations at run time or load time – and
heterogeneous devices – in which a given program can run on a
variety of different hardware/software platforms – provides an
environment for such applications. Heterogeneity implies the
need for adaptability in the construction of the code for each
device, and mobility implies that the components of the
application come from diverse sources. Program generation will
be needed to control not the cost of a single algorithm, but the
gradual accretion of inefficiencies from the protocols through
which the parts of the application communicate.

Like many advances in programming languages and software
engineering, program generation will show its real value in
“programming in the large.” This makes it especially difficult to
prove that value. The program generation community can help by
implementing compelling applications – and making sure that
program generation is seen to be essential to them – and by
providing programmers with tools to do the job themselves.

8. PROGRAM GEN. CONSIDERED HARD
We have argued that the string-oriented model of code generation
used by practitioners for compile-time program generation
deserves more respect from academic researchers. In Jumbo, we
have attempted to preserve the model while producing run-time
program generators, by using the concept of compositional
compilation. This entails certain compromises – most
significantly, prohibiting the use of string destructor operations –
that seem to us inescapable.

In our opinion, one rarely-spoken reason that academics disdain
the string model is that it leaves nothing to do. It has so little
structure that there is no apparent role for language or run-time
support, and thus no employment for theoreticians. However,
compositional compilation adds enough structure that some
interesting problems do arise.

Jumbo is actually a rather superficial implementation of the idea
of compositional compilation. Not to be misunderstood: it is a
substantial, and useful, piece of software implementing the entire
Java language. But it is only a first implementation. There are
difficult problems remaining to be solved both to improve Jumbo
and to apply the idea to other languages.

Lars Clausen’s PhD dissertation [3] on the design and use of
Jumbo describes a proof-of-concept implementation of one such
improvement. It includes a set of source-level rewriting rules for
Java that could be used to optimize the code generation process of
Jumbo. This is, in effect, a partial evaluation problem, but a hard
one. Clausen implemented these rules and applied them to show
that performance improvements were possible. However, the
application of the rules was carefully guided by hand, and results
were obtained for only a small set of simple cases. No partial

evaluation is incorporated in the running system. Making one
work is a difficult research problem.

Another deep problem is reasoning about fragments in isolation.
This is the problem that the partial evaluation-based systems
avoid, but it is common to other program generation systems, as
well as aspect-oriented programming. It has been suggested that
JML [14] can form the basis of a reasoning system for fragments.
In any case, at this stage, it is difficult even to state the
requirements on fragments, much less prove them.

There is a host of broader questions concerning the applicability
of our approach. In principle, any language can be implemented
by a compositional compiler, but that is in part because the notion
of compositionality is rather flexible. There are difficulties on
both ends: some language features – notably, those whose
implementation involves syntactic manipulation, like macros –
and many back-end optimizations are difficult to define
compositionally. (Java is an easy target because it has no
preprocessor, and the translation to JVM code essentially admits
no role for global optimizations.) If run-time program generation
becomes widely used, it will be reasonable to consider, as a
language design criterion, the ability of the language to be
compiled compositionally.

9. CONCLUSIONS
Our view of program generation – this is true especially of run-
time program generation – is simply that the lack of appropriate
tools makes it too hard for the ordinary programmer. Some
general-purpose tools for producing program generators are easy
to use, but implement only subsets of languages, or impose other
restrictions that programmers may find frustrating. But program
generation has great potential that will only be realized when
ordinary programmers can use them for routine tasks – which
means, when programmers can write them themselves.

Jumbo is a tool that is easily learned, implements all of Java, and
places few restrictions on the programmer. We have given some
examples to show both its ease of use and its range of applications
(more can be found in the references). We believe these are key
features of any system that will achieve widespread use.

10. ACKNOWLEDGEMENTS
The Jumbo system was written by Lars Clausen, with help from
Ava Jarvis. The author received help in preparing this paper from
T. Baris Aktemur and Philip Morton. John Hatcliff provided very
helpful feedback on an earlier version of the paper.

11. REFERENCES
[1] T.B. Aktemur, J. Jones, S. Kamin, L. Clausen. Optimizing
marshalling by run time program generation. In preparation.
2004.

[2] G. Attardi, A. Cisternino, A. Kennedy. CodeBricks: code
fragments as building blocks. PEPM 2003. San Diego,
CA. 66-74.

[3] L. Clausen. Optimizations in Distributed Run-time
Compilation. Univ. of Illinois PhD thesis. 2003.

[4] D. Cordes, M. Brown. The Literate-Programming Paradigm.
IEEE Computer 24:6. June 1991. 52-61.

[5] D. Engler, W. Hsieh, M. Kaashoek. `C: A language for
high-level, efficient, and machine-independent dynamic
code generation. Proc. 23rd POPL. St. Petersburg Beach,
Florida. January 1996. 131-144.

[6] M. Frigo, S.G. Johnson. FFTW: An Adaptive Software
Architecture for the FFT. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP). 1998. 1381-1384.

[7] E. Gamma, R. Helm. R. Johnson, J. Vlissides. Design
Patterns. Addison-Wesley. Reading, Mass. 1995.

[8] J.Hannemann, G. Kiczales. Design Pattern Implementation in
Java and AspectJ. Proc. 17th OOPSLA. November 2002. 161-
173.

[9] S. Kamin. Routine Run-time Code Generation. Proc. 18th
OOPSLA (Onward! Track). November 2003. 208-220.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.
G. Griswold. An Overview of AspectJ. Proc. ECOOP. Springer-
Verlag. 2001.

[11] D.E. Knuth. Literate Programming. Computer J. 27:2. May
1984. 97-111.

[12] D.E. Knuth, Computers & Typesetting, Volume B: TeX:
The Program. Addison-Wesley. Reading, Massachusetts. 1986.

[13] D.E. Knuth, Computers & Typesetting, Volume D:
METAFONT: The Program. Addison-Wesley. Reading,
Massachusetts. 1986.

[14] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary Design
of JML: A Behavioral Interface Specification Language for Java.
Department of Computer Science, Iowa State University, TR #98-
06x. November 2003.

[15] Y. Oiwa, H. Masuhara, A. Yonezawa. DynJava: Type
Safe Dynamic Code Generation in Java. 3rd JSSST
Workshop on Programming and Programming Languages
(PPL2001). March 2001.

[16] R. Sedgewick, K. Wayne. Introduction to Computer Science.
Online textbook available at www.cs.princeton.edu/introcs/home/.
2004.

[17] Y. Smaragdakis, D. Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based
designs. ACM Trans. On Software Eng. And Methodology 11(2).
April 2002. 215-255.

[18] W. Taha, T. Sheard. Multi-stage programming with explicit
annotations. In Proc. PEPM ’97. ACM SIGPLAN Notices 32: 12.
New York. June 12-13, 1997. 203-217.

@* Fibonacci numbers.
Program to compute the first 25 Fibonacci numbers.

@* Main program.
This is a skeletal program body around which the program is constructed.

public class Fib25 {
 public static void main (String[] args) {
 final int MAX = 25;
 @<Main variable declarations@>
 @<Generate Fibonacci@>
 }}

@* Local (main) variables.
Right now, we know we need a counter to count the first 25 numbers.
@<Main variable declarations@> =
 int count;

@ Generation of Fibonacci numbers requires initial priming with two values.
@<Main variable declarations@> +=
 int fib1 = 0, fib2 = 1, newfib;

@* Generation of Fibonacci numbers.
@<Generate Fibonacci@> =
 @<Print titles and first two@>
 count = MAX-2;
 @<Loop to print remainder@>

@* Printing titles.
@<Print titles and first two@> =
 System.out.println("Fibonacci numbers");
 System.out.println(fib1);
 System.out.println(fib2);

@* Generate the remainder of the list.
@<Loop to print remainder@> =
 while (count-- != 0) {
 @<Compute new Fibonacci@>
 System.out.println(newfib);
 @<Reset last two Fibonacci values@> }

@* Computing the next Fibonacci.
Next Fibonacci number is fib_n = fib_n-1 + fib_n-2.
@<Compute new Fibonacci@> =
 newfib = fib1 + fib2;

@* Reset the last two values.
@<Reset last two Fibonacci values@> =
 fib1 = fib2;
 fib2 = newfib;

Figure 1: Web for Fibonacci program (after Figure 8 from [4])

public class Fib25 {
 public static void main (String[] args) {
 final int MAX = 25;
 int count;
 int fib1 = 0, fib2 = 1, newfib;
 System.out.println("Fibonacci numbers");
 System.out.println(fib1);
 System.out.println(fib2);
 count = MAX-2;
 while (count-- != 0) {
 newfib = fib1 + fib2;
 System.out.println(newfib);
 fib1 = fib2;
 fib2 = newfib;
 }}}

Figure 2: Tangled program from Figure 1

public class Fib1 {

 public static void main (String[] args) {
 new Fib1().genfib().generate();
 }

 Code genfib () {
 // Program to compute the first 25 Fibonacci numbers.
 return $< public class Fib25_1 {
 public static void main (String[] args) {
 final int MAX = 25;
 `Stmt(vardecls());
 `Stmt(gen25fibs());
 }
 } >$;
 }

 Code vardecls () {
 // Right now, we know we need a counter to count the first 25.
 return $< int count; >$;
 }

 Code gen25fibs () {
 // Declare and initialize variables, then enter loop.
 return $< `Stmt(initial_decls())
 `Stmt(generate_fibonacci()) >$;
 }

 Code initial_decls () {
 // Generation of Fibonacci numbers requires initial priming with two values.
 return $< int fib1 = 0, fib2 = 1, newfib; >$;
 }

 Code generate_fibonacci () {
 return $< `Stmt(print_title_and_first_two());
 count = MAX-2;
 `Stmt(loop_to_print_remainder()) >$;
 }

 Code print_title_and_first_two () {
 return $< System.out.println("Fibonacci numbers");
 System.out.println(fib1);
 System.out.println(fib2); >$;
 }

 Code loop_to_print_remainder () {
 // The loop will run until count is zero.
 return $< while (count-- != 0) {
 `Stmt(compute_new_fibonacci());
 System.out.println(newfib);
 `Stmt(reset_last_two_Fibonacci_values());
 } >$;
 }

 Code compute_new_fibonacci() {
 // Next Fibonacci number is fib_n = fib_n-1 + fib_n-2.
 return $< newfib = fib1 + fib2; >$;
 }

 Code reset_last_two_Fibonacci_values() {
 return $< fib1 = fib2;
 fib2 = newfib; >$;
 }
}

Figure 3: Jumbo version of web in Figure 1

public class Fib2 {
 public static void main (String[] args) {
 new Fib2().genfib().generate();
 }

 // Compute first 25 Fibonacci numbers.
 Code genfib () {
 // The key part of this algorithm is the body of the loop, which maintains
 // the invariant: for some n >= 0, fib1 = F_n and fib2 = F_n+1.
 return context($< newfib = fib1 + fib2;
 fib1 = fib2;
 fib2 = newfib;
 `Stmt(print($<fib2>$)) >$);
 }

 Code context (Code inner_loop_body) {
 // Declare local variables, then establish invariant and maintain it in loop.
 // Note that termination code is independent of the computation.
 return class_container("Fib25_2", declare_vars(), establish_invariant(),
 repeat(23, inner_loop_body));
 }

 Code class_container(String class_name, Code decls, Code pre_loop, Code loop) {
 // Class = declarations, code to establish invariant, and main loop
 return $< public class `class_name {
 public static void main (String[] args) {
 `Stmt(decls)
 `Stmt(pre_loop)
 `Stmt(loop)
 }
 } >$;
 }

 Code declare_vars () {
 // These are the variables used in the loop body above
 return $< int fib1, fib2, newfib; >$;
 }

 Code establish_invariant () {
 // Set fib1 and fib2 so as to satisfy invariant
 return $< fib1 = 0; fib2 = 1;
 `Stmt(print($<"Fibonacci Numbers">$))
 `Stmt(print($<0>$))
 `Stmt(print($<1>$)) >$;
 }

 Code repeat (int n, Code body) {
 // Repeating by a fixed amount is easy
 Name c = new Name("count");
 return $< int `c = `Int(n);
 while (`c-- != 0) `Stmt(body) >$;
 }
 }

 // Auxiliary methods
 Code print (Code subject) {
 return $< System.out.println(`Expr(subject)); >$;
 }
}

Figure 4: Second Jumbo version of Fibonacci web

static Code genProxy (String proxyname, MonoList decls,
 Codefun safeFun, Codefun regularFun, Codefun unsafeFun) {
 return $<
 public class `proxyname implements RequestInt {
 RequestInt subject;

 `Field(decls);

 public `proxyname (RequestInt subject) { this.subject = subject; }

 public void safeRequest(String s) {
 `Stmt(safeFun.apply($<subject.safeRequest(s);>$));
 }

 public void regularRequest(String s) {
 `Stmt(regularFun.apply($<subject.regularRequest(s);>$));
 }

 public void unsafeRequest(String s) {
 `Stmt(unsafeFun.apply($<subject.unsafeRequest(s);>$));
 }

 } >$;
 }

Figure 6: Simple Proxy Generator in Jumbo

 static Code genProxy (String proxyname,
 MonoList decls,
 CodeMap methodMods) {
 Same as previous version, but use lookup in methodMods, e.g.

 public void safeRequest(String s) {
 `Stmt(methodMods.get("safeRequest").apply(
 $<subject.safeRequest(s);>$));
 }

Figure 7: Second Simple Proxy Generator in Jumbo

class CountingProxy implements RequestInt
{
 RequestInt subject;
 int count = 0;

 public CountingProxy (RequestInt subject) {
 this.subject = subject;
 }

 public void safeRequest(String s) {
 subject.safeRequest(s);
 }

 public void regularRequest(String s) {
 subject.regularRequest(s);
 }

 public void unsafeRequest(String s) {
 count++;
 subject.unsafeRequest(s);
 System.out.println(count);
 }
}

Figure 5: Proxy implementation in Java

 public static Code genProxy(String proxyType, String interfaceName,
 MonoList newFields, CodeMap mods){
 MonoList body = new ArrayMonoList();
 Type subjectType = new Type(interfaceName);
 body.add($Field< `Type(subjectType) subject; >$);
 body.add(newFields);
 body.add($< public `proxyClassName (`Type(subjectType) s) { subject = s; } >$);
 body.addAll(genClassBody(interfaceName, mods));

 Code c = $< public class `proxyType implements `interfaceName {
 `Body(body) } >$;
 return c;
 }

 static MonoList genClassBody(String interfaceName, CodeMap mods){
 MonoList body = new ArrayMonoList();
 Method[] methods = Class.forName(interfaceName).getMethods();
 for(int i=0; i<methods.length; i++)
 if(! Modifier.isFinal(methods[i].getModifiers()))
 body.add(genMethod(methods[i], mods));
 return body;
 }

 static Code genMethod(Method method, CodeMap mods){
 String methodName = method.getName();
 Codefun cf = mods.get(methodName);
 Class retType = method.getReturnType();
 Class[] parameters = method.getParameterTypes();
 return genMethod(methodName, cvtToType(retType), cvtToType(parameters), cf);
 }

 static Code genMethod(String methodName, Type retType,
 Type[] parameterTypes, Codefun cf){
 Code delegation;
 MonoList paramList = new ArrayMonoList();
 MonoList argList = new ArrayMonoList();
 for(int i=0; i<parameterTypes.length; i++){
 String argName = "__arg"+i;
 paramList.add($Param< `Type(parameterTypes[i]) `argName >$);
 argList.add($< `argName >$);
 }

 delegation = $<subject.`Name(methodName) (`Args(argList)); >$;
 return $< public `Type(retType) `Name(methodName) (`Params(paramList)){
 `Stmt(cf.apply(delegation)) } >$;
 }

 static Type[] cvtToType(Class[] classes){
 Type[] types = new Type[classes.length];
 for(int i=0; i<types.length; i++)
 types[i] = cvtToType(classes[i]);
 return types;
 }

 static Type cvtToType(Class aClass){
 if(aClass.isPrimitive()){
 if(aClass == Boolean.TYPE) return Type.boolean_type;
 if(aClass == Character.TYPE) return Type.char_type;
 // … seven more similar lines omitted to save space …
 }else{
 return new Type(aClass.getName());
 }
 }

Figure 8: Generalized Proxy Generator in Jumbo

