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ABSTRACT 

Programmers frequently write program generators using the 
simple model of programs as text.  The essence of this approach is 
its lack of structure.  For this reason, it gets no respect from 
academic researchers.  But the flip side of lacking structure is 
freedom from restrictions.  We argue that the latter is important, 
and perhaps essential, in finding a willing audience for program 
generation among working programmers.  Jumbo is a system for 
producing run-time program generators, which is designed to 
offer the programmer a “programs as strings” model to as great an 
extent as possible, though some constraints are inevitable.  We 
show by several examples that these constraints still allow for 
both a natural and a powerful program generation model.  We 
then discuss how the approach taken by Jumbo, though possessing 
less structure than some competing methods, still raises scientific 
problems that ought to be of interest to researchers in this area. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation. 

General Terms 
Languages. 

Keywords 
Run-time code generation;  Java. 

1. INTRODUCTION 
Programmers frequently write program generators using the 
simple model of programs as text.  Much experience shows that 
this method is often efficacious and is not overly difficult.  
However, it gets no respect from academic researchers.  It is 
perhaps a perfect example of the academic’s nemesis: something 
that works in practice but doesn’t work in theory. 
 
In truth, virtually all program generation systems appeal, at some 
intuitive level, to this model.  It is difficult to imagine how a 
programmer would build or understand a program generator 
without being able to picture the programs it generates.  However, 
the systems are always enriched in some way, with some structure 
and, accordingly, some restrictions.  The essence of the “programs 
as strings” model is freedom from constraints. 

 
Jumbo is a Java compiler incorporating a code-quotation 
mechanism.  It allows programmers to easily create both compile-
time and run-time program generators.  Its code quotation 
mechanism is unusual in its generality: virtually any Java program 
or program fragment can be quoted, and virtually any part of a 
program can be left as a parameter for the program generator.  
This makes for a natural, easy-to-learn, and powerful mechanism. 
 
Jumbo attempts to adhere to the programs-as-strings model as 
much as possible, because of its simplicity.  But it cannot follow it 
perfectly because the pure programs-as-strings model is inherently 
compile-time.  Jumbo’s purpose is to allow for the creation of 
run-time program generators. Thus, there are restrictions:  For 
one, only syntactically coherent parts of a program can be 
abstracted.  More significantly, only string construction is 
permitted, not string destruction.  This restriction seems to us 
essential if the generated programs are to be compiled in advance, 
rather than simply invoking a compiler at run time. 
 
In this paper, we demonstrate first that Jumbo still follows the 
string model closely enough that it is easy to write program 
generators with little training.  We show this by giving several 
examples, each consisting of a sequence of program generators 
for a single domain.  The first element of each sequence is so 
simple that a Java programmer could write it in just a few 
minutes; the most complex might take a couple of hours.  The 
domains are:  literate programming; object-oriented programming 
patterns; and Huffman coding. 
 
Following these examples, we contrast the Jumbo approach with 
other program generation methods and discuss some areas of 
application that we think are of potential interest for the program 
generation community.  Lastly, we make the case that the Jumbo 
approach to program generation, while perhaps lacking some of 
the interesting theoretical properties of other approaches, 
nonetheless provides enough structure to raise interesting 
scientific questions;  in this way, we hope to interest other 
researchers in our methodology. 

2. JUMBO 
Jumbo is a compiler for a “two-level” version of Java.  It permits 
the programmer to specify code to be generated using a 
quote/anti-quote syntax similar to that of MetaML [18].  A 
fragment of Java code within brackets $< and >$ represents a 
value of type Code.  Within those quotations, an expression of the 
form `(expr) or `syntax-category(expr) causes the expr 
to be evaluated and its value, which must be of type Code, to be 
spliced into the quoted code.  (These antiquated expressions are 
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sometimes called “holes;” they are the parts of the code that will 
not be known until program generation time.)  The syntax 
category, which is needed just for parsing purposes, represents the 
type of fragment that is expected at that position in the code; Expr 
and Stmt are the most common cases.  (Occasionally, syntax 
categories are used in the quotes themselves:  $syntax-
category< … >$.) 
 
As a simple example, here is the famous power function example: 
 
  interface PowerFun { int pow (int x) ; } 

 
  static Code genPowerBody (int n) { 
    return (n==0) ? $< 1 >$ 
         : (n==1) ? $< x >$ 
         : even(n)?  
             $< sqr(`Expr(genPowerBody(n/2))) >$ 
         : $< x * `Expr(genPowerBody(n-1)) >$; 
  } 

 
  static Code genPowerClass (int n) { 
    return $< public class PowerClass 
                            implements PowerFun { 
                public int pow(int x) { 
                  return `Expr(genPowerBody(n)); 
              }} >$; 
  } 
 
A client calls genPowerClass(k) and gets back a Code object, 
say powCode.  It can then do one of the following 
 
     powCode.generate(); 
 
 or     PowerFun p =  
         (PowerFun)powCode.create(“PowerClass”); 
     … p.pow(arg) … 
 
The generate call creates the PowerClass .class file and 
leaves it for later use.  The create call does this, but then creates 
an object of the generated class.  Generally speaking, generate 
is for compile-time uses and create is for run-time uses.  (The 
PowerFun interface is needed only for run-time uses.) 
 
The quotation syntax works, intentionally, much like ordinary 
string quotation.  Any Java code can be quoted in this way.  In 
addition to the syntax categories like Expr and Stmt that can be 
used in antiquotes, categories Int, Double, Char, and so on, are 
used to “lift” values of the corresponding type into generated 
code.  That the result is a value of type Code rather than String 
should be transparent to the programmer, except in that it implies 
the restriction mentioned in the introduction: Code values can be 
constructed by quotation and splicing, but cannot be destructed. 
 
The basic idea behind Jumbo is compositional compilation. The 
crucial point is that the abstract syntax operations of the Jumbo 
API are the compiler. Unlike an ordinary compiler, in which the 
syntax tree is a passive data structure upon which the compiler 
operates, the Jumbo operators are genuine functions that perform 
compilation. This is called a compositional compiler because the 
compilation of each language construct is a function only of the 
compilation of its sub-constructs, which is a very different 
structure from conventional compilers. The advantage is that any 
particular piece of syntax can be easily abstracted from and filled 
in at a later time. 

3. LITERATE PROGRAMMING 
Literate programming is an idea introduced by Donald Knuth [11] 
in 1984.  He argued that programs should be readable as text, and 
then famously backed up the argument by publishing the 
implementations of TEX and Metafont [12,13].  Unable to 
effectively present his programs within the constraints of ordinary 
program structure, he wrote his programs in a flattened format, 
called a web, using links to connect composite program parts to 
their constituents.  Within this flattened format, sections could be 
defined and comments written, making it read like a sequential 
narrative.  A program called a “weaver” turned the web into a 
nicely typeset document, with table of contents, index, cross-
references, and section headings.  Another program, called a 
“tangler,” extracted the program text from the web and put all the 
fragments in their correct places so that the program could be 
compiled.  (See www.literateprogramming.com for the latest 
on literate programming.) 
 
This may seem an odd place to begin a discussion about program 
generation, but one of the primary goals of program generation – 
compile-time program generation, at least – is to improve 
program structure.  This goal is sometimes implicit, but it is 
always present, even when improvements in efficiency appear to 
be the driving motivation.  After all, the program being generated 
could be produced by hand.  But this would involve extra work 
and, more importantly, would obfuscate the program. 
 
Thus, program generation is, in large measure, an approach to the 
age-old software engineering problem of making programs more 
transparent.  These were also Knuth’s goals in the invention of 
literate programming. 
 
In any event, the role of the tangler in literate programming is 
fundamentally program generation.  Accordingly, we produce a 
version of literate programming in Jumbo.  We cannot produce a 
weaver, as we have no way to produce anything but compiled 
programs.  On the other hand, the generality of Jumbo will allow 
us to go beyond standard literate programming in the presentation 
of program structure, as we will see. 
 
We illustrate with an example by Cordes and Brown [4]:  a 
program to print the first 25 Fibonacci numbers.  Figure 1 is the 
web for this program1; it is drawn from Figure 8 of [4], but 
modified to produce Java instead of C code (some minor 
modifications, such as shortening the comments, were made to 
save space).  The tangled program is shown in Figure 2.  (The 
woven – i.e. typeset – version of the program is not shown here, 
as we are not attempting to produce a weaver.) 
 
We trust that Figures 1 and 2 need no extensive explanation.  
There is perhaps one notation that is not obvious:  on lines 14 and 
17 we see “@<Main variable declarations@> =” and 
“@<Main variable declarations@> +=”, respectively.  In 
all other cases, we just see “=”, meaning that the earlier 
appearance of the placeholder is to be replaced by the code that 
follows.  The “+=” notation indicates that we are adding code to 
that already substituted for the placeholder. 
 

                                                                 
1 All figures appear at the end of the paper. 



The Jumbo version of this web is shown in Figure 3.  Each 
fragment of code is represented by a function.  (We cannot simply 
assign these code fragments to variables, as every reference to a 
variable would appear before its definition.)  Aside from some 
additional boiler-plate in each code section, we have fairly 
reproduced the structure of the original web. (The careful reader 
will note that we have not reproduced the behavior of the “+=” 
operator.  We will address this at the end of this section.)   
 
Figure 3 is the entire program.  Jumbo itself acts as the tangler.  
Jumbo does not produce source code, but if it did, it would be 
exactly the same source code as is shown in Figure 2.  That is, the 
JVM code it produces is just what a Java compiler, such as 
javac, would produce from the code in Figure 2. 
 
In Jumbo, we can give another version of the program, one we 
consider even more “literate” than the first.  Literate programming 
permits the physical structure of the program to be presented in a 
readable form, by flattening it into a sequential narrative.  
However, the logical structure – the way the programmer would 
explain the program – may be quite different.  In this program, 
one could argue that the real heart of the matter is the body of the 
loop.  This suggests an entirely different “layout” of the program.  
This alternative presentation is given in Figure 4.  We again trust 
that this “web” is sufficiently clear to require no lengthy 
explanation.  The program that Jumbo produces from this input is 
nearly identical to that generated by the previous examples: we 
moved the initializations of fib1 and fib2, as their new positions 
seem to follow the logic of this presentation more closely, and 
used a generated name instead of count, so as to properly 
implement a “repeat” construct.  Note how this presentation 
highlights the loop body, and also keeps all the termination logic 
together.  (We have also abstracted out the print function, making 
it easier to modify. This could always be done by procedural 
abstraction, but the idea here is to preserve the program while 
changing only its presentation; adding another procedure would 
be changing the program.)  
 
We return now to the problem of implementing the += operator.  
The problem is to add new declarations to the declaration section 
at will, without having an explicit hole for each declaration.  This 
cannot be done directly in Jumbo, as all abstractions of code are 
explicit.  However, we can accomplish this by ordinary 
programming: declare a Code variable decls, and whenever a 
new declaration is needed, at it to decls by side effect: 
 
  decls = $< `Stmt(decls) … new declaration … >$; 
 
In the end, put decls into the (single) hole created for it.  For 
space reasons, we cannot show this entire version.  But the point 
is that this problem can be handled by the ordinary programming 
facilities available in Java. 
 
Aside from some notational awkwardness, we have a system that 
emulates literate programming, and even generalizes it.  We do 
not have a weaver (although the main contribution of the weaver – 
providing cross-referencing and indexing – could be provided by 
a Java cross-referencing tool, of which several exist).  
Nonetheless, for a quick and easy – and extensible – 
implementation of literate programming, it’s not bad! 

4. OBJECT-ORIENTED PATTERNS 
Object-oriented patterns [7] are useful programming idioms 
related to the structure of classes and class hierarchies.  Patterns 
are not formally defined, like programs, or even very closely 
defined, like algorithms.  Rather, they are fairly general ideas 
about how to write programs.  Thus, for any given pattern, the 
variety of programs that can be said, correctly, to employ that 
pattern is very large.  Any attempt to program patterns as program 
generators must therefore reckon with the impossibility of writing 
a “complete” implementation of the pattern – if that phrase even 
has any meaning. 
 
Nonetheless, implementing patterns is a natural and desirable 
thing to do, for the usual reasons:  avoiding duplication of effort, 
ensuring high quality, enforcing standards, etc.  Little program 
generators are one solution to the quandary.  Instead of attempting 
to write a program generator that handles every possible instance 
of the pattern, we can write a version of the pattern for our 
particular problem.  If it turns out that our version is not general 
enough, we have the same recourse as with any other program:  
fix it.  This is practical because most uses of patterns are not hard 
to program; it is only the attempt to program them in great 
generality that is difficult. 
 
We illustrate with a sequence of implementations of the Proxy 
pattern [7].  This pattern is used when an object needs to have its 
behavior altered in some way; another object, or proxy, can be 
used in its place, delegating operations to the original object 
(called the subject) as necessary.  Subclassing is one way of 
implementing the Proxy pattern, but it is not applicable in all 
cases, and it is generally assumed in discussions of this pattern 
that subclassing is, for whatever reason, not an option. 
 
The implementation of Proxy can be addressed at two levels of 
generality:  We can create methods of conveniently generating 
proxies for classes with a given, fixed interface; or we can create 
methods to generate proxies for any interface.  In the latter case, 
the operations of that interface have to be provided as an 
argument to the generator, either explicitly by the programmer, or 
by the programming environment, or by reflection. 
 
We will start our sequence of implementations by implementing 
proxies in the less general sense.  The example is from [8].  The 
RequestInt interface consists of three methods:  safeRequest, 
regularRequest, and unsafeRequest.  The proxies “advise” 
these methods; that is, they use delegation, but perform actions 
before or after the delegation call.  Note that there may be several 
different proxy implementations of interest – i.e. different kinds of 
advice – and the subjects that we want to advise may come from 
different classes (all sharing the same interface, of course). 
 
To give the idea of what we’re getting at, we present a proxy in 
pure Java in Figure 5.  For any object implementing the 
RequestInt interface, it adds a counter on calls to 
unsafeRequest.  The client uses it by calling 
 
  CountingProxy proxy1 = 
           new CountingProxy(new Subject()); 
 
Whatever methods we write to create proxy implementations, we 
should be able to produce a class like this one as one example. 
 



Our first Jumbo implementation provides the proxy builder with a 
single method, genProxy, to create the proxy class: 
 
  static Code genProxy (String proxyname, 
        MonoList decls, Codefun safeFun, 
        Codefun regularFun, Codefun unsafeFun) 
 
The first argument is the name of the proxy class to be generated 
and the second is a list containing any new variable declarations 
needed by the proxy code.  The third, fourth, and fifth arguments 
are function objects implementing this interface: 
 
  interface Codefun {public Code apply (Code c);} 
 
These supply the advice for each method – safeRequest, 
regularRequest, and unsafeRequest – in that order, by 
giving a code-generating function to be applied to the delegation 
call.  For example, the identity function means the proxy uses 
pure delegation and provides no advice.  Thus, the code in Figure 
5 is produced by these statements: 
 
  Codefun ID = new Codefun () { 
    public Code apply(Code call) {return call;}}; 
  Codefun COUNT = new Codefun () { 
    public Code apply (Code call) { 
      return $< count++; 
                `Stmt(call) 
                System.out.println(count); >$; 
      } 
    }; 
  Code c = RequestProxyGen.genProxy ( 
                   "CountingProxy", 
      $Field< int count = 0; >$, 
                   ID, ID, COUNT); 
  c.generate(); 
 
The genProxy method is shown in Figure 6. 
 
Our next version makes this just a little easier, especially in those 
cases where most of the methods are to get the same advice.  
Here, we put the code functions into a table.  The improvement is 
that the table has a default value, so that we needn’t mention the 
methods that get the standard treatment.  In this version, the code 
of Figure 5 is produced by these statements: 
 
  CodeMap mods = new CodeMap(ID); 
  mods.put("unsafeRequest", COUNT); 
  Code c = RequestProxyGen.genProxy( 
                   "CountingProxy", 
                   $Field< int count = 0; >$, 
                   mods); 
 
The function objects ID and COUNT are as above.  CodeMap is a 
collection class based on Map but allowing for a default value in 
the constructor; to save space, its definition is not shown.  This 
definition of genProxy is given in Figure 7. 
 
Generating proxies for arbitrary interfaces is considerably more 
complex.  In Java, we can obtain the interface specification by 
reflection.  In Figure 8, we present a program generator that does 
this.  To save space, we have omitted the definition of 
cvtToType, an uninteresting method that converts Class objects 
to objects of the Jumbo class Type. 
 

The proxy writer’s view of the new version of genProxy is 
almost the same as above.  The code just given is altered only to 
the extent of changing the assignment to c: 
 
  Code c = ProxyGenerator.genProxy( 
            "CountingProxy", “RequestInt”, 
            $Field< int count = 0; >$, mods); 
 
That is, the generator is a generic “ProxyGenerator” instead of 
RequestProxyGen, and the interface name is passed as an 
argument. 
 
That is as far as we will go with this example.  As mentioned at 
the start of the section, any implementation of a pattern will 
necessarily leave room for improvement.  In Jumbo, it was easy to 
get started, and what we’ve done can be easily extended. 

5. HUFFMAN CODES 
Creating run-time program generators2 in Jumbo is just as easy as 
creating compile-time generators.  Indeed, the program generators 
we have presented up to now, though intuitively compile-time, 
could be used at run-time (replacing the generate calls with 
create calls and adding interfaces as needed).  They could even 
be used on remote machines.  The latter might well be useful.  For 
example, one could imagine creating and distributing a library of 
Jumbo code for literate programming.  Run-time use and remote 
use are essentially the same: both require the ability to generate 
programs without generating source and invoking a compiler. 
 
We present in this section an example of a clear-cut use of run-
time program generation: Huffman encoding.  More precisely, we 
use program generation to create an efficient decoder for a given 
code.  The idea is that the code for a particular file or set of files 
may be determined dynamically (from a sample of the input), but, 
once determined, the decoding process can potentially be 
optimized by generating a decoder specifically for that input. 
 
First, a brief primer on Huffman encoding.  A Huffman code is a 
binary tree whose leaf nodes are labeled with characters, every 
character appearing exactly once.  The code for a character is just 
the path from the root to that character’s node (using 0 for left and 
1 for right).  To decode a bit string, therefore, is just to follow the 
bit string from the root to a leaf note, emit the character, and then 
continue from the root again.  The construction of the code is the 
interesting part, but it is not our concern here. 
 
Assume a type HuffmanTree representing a binary tree, with 
fields c (for the character), left, and right, the code to decode a 
string of zeroes and ones (for simplicity, we represent this as a 
Java string, using the characters ‘0’ and ‘1’ instead of actual bits).  

                                                                 
2 We use the term “run-time program generation” (RTPG) in 
preference to the more common “run-time code generation” 
(RTCG) advisedly.  “Program generation” has the connotation of 
source-level specification of generated code, under programmer 
control, whereas “code generation carries the implication of low-
level programming done by “systems programmers.”  We believe 
code/program generation should be done at run time, but want to 
emphasize that the programmer is fully in control of the process 
and determines exactly what will be generated;  hence “run-time 
program generation.” 



Then the following will output the characters encoded in that 
string according to the HuffmanTree tree: 
 
  public void decode(String s) { 
    HuffmanTree x = tree; 
    for (int i=0; i<s.length(); i++) { 
      char bit = s.charAt(i); 
      if (bit == '0') x = x.left; 
      else if (bit == '1') x = x.right; 
      if (x.left == null && x.right == null) { 
          System.out.print(x.c); 
          x = tree; 
      } 
  } 
 
(This code was obtained from [16].) 
 
Generating the decoder for a given tree is straightforward: 
 
  Code makeDecodeBody () { 
    if (left == null || right == null) 
      return $< `Char(c) >$; 
    else return $< (s.charAt(i++) == '0')  
                  ? `Expr(left.makeDecodeBody()) 
                  : `Expr(right.makeDecodeBody()) 
                >$ ; 
  } 
 
  Code makeDecodeClass () { 
    return 
      $< public class Decode 
                  implements DecodeInt { 
    int i=0;  String s; char c; 
    public void decode (String s) { 
      int l = s.length(); 
      while (i < l) { 
        c = `Expr(tree.makeDecodeBody()); 
  System.out.print(c); 
      } 
      System.out.println(); 
  }} >$ ; 
  } 
 
 The method makeDecodeClass is used as follows: 
 
  Code c = tree.makeDecodeClass(); 
  DecodeInt d = (DecodeInt)(c.create("Decode")); 
 
In our experiments, the generated code ran an order of magnitude 
faster than the original code.  We are reluctant to report specific 
numbers, both because we have not done extensive testing and 
because the Sun Hotspot run-time system is somewhat 
unpredictable;  thus, our numbers might not be reproducible.  In 
any case, the point is that run-time generation is easy to do, and 
may produce speed-ups.  (A more careful performance analysis is 
done in [1], where we generate code for serialization.)  
Furthermore, regenerating code is also easy: in some 
circumstances, it may be advantageous to continue sampling the 
input, periodically recomputing the code and regenerating the 
decoder; in others, it may be worthwhile to generate a variety of 
codes and dynamically choose the one that produces the most 
efficient decoder (as is done, for example, for FFT codes in 
FFTW [6]).  Though still considered exotic, the use of code 
generation to gain efficiency in this way could be routine if 
appropriate tools existed. 

6. PROGRAM GEN. CONSIDERED EASY 
We hope the examples we’ve given here convince the reader that 
program generation in the Jumbo model – basically, programs as 
strings without destructor operations – is straightforward.  The 
string-based model has advantages that have a direct impact on 
the practicality – and popularity – of program generation, and 
which we have attempted to preserve in Jumbo: 
 
The entire language is covered.  Programmers can have 
confidence that any Java program can be quoted and, when 
generated, will provide the expected results.  It would be much 
easier to implement a “sufficiently large” subset of the language, 
but that is not enough.  Programmers sometimes have 
idiosyncratic styles based on the use of some unusual idioms; 
having to change that style would be an undue burden.  They also 
frequently use code that they have imported – and may not even 
fully understand – that makes use of a feature not covered in the 
subset.  (For Java, the obvious example is inner classes; though 
exotic, they are used often enough that failure to implement them 
would render a Java system unusable for most large Java 
programs.)   
 
Holes are permitted nearly anywhere.  In a pure string model, 
abstraction on any substring in the source code is possible.  In 
Jumbo, abstraction is confined to syntactically sensible locations 
(and some restrictions are imposed as a result of the complexity of 
the mapping from concrete to abstract syntax).  However, we 
avoid other restrictions, such as disallowing abstraction on type 
names or declarations.  As another example, Smaragdakis and 
Batory [17] show why it is useful to abstract on the superclass of a 
class definition. 
 
The lack of structure in the string model leads to a variety of 
potential problems.  For example, one cannot even guarantee that 
the constructed program is syntactically correct.  (In Jumbo, 
fragments must be parsable, but it is possible to build an invalid 
abstract syntax tree by inserting the wrong type of subtree under a 
node.)  But it seems to us that the difficulties do not 
fundamentally exceed what one encounters in ordinary 
programming; or, to put it another way, the solution to the 
possibility of error is careful debugging. 
 
By contrast, other approaches limit the programmer’s control over 
the program construction process in fundamental ways.  They do 
this either to provide programmer support or for efficiency or 
both.  When used to aid the programmer, such limits are often, in 
our opinion, counter-productive, as they force the programmer to 
find ways to work around them.  When used for efficiency, they 
preclude the use of the system for many important applications, 
and therefore offer the programmer no help for those applications.  
Such restrictions appear in both partial evaluation-based systems 
and “heterogeneous” – that is, Jumbo-like – systems: 
 
Partial evaluation systems.  We refer here to systems based on the 
idea that the programmer writes one program, paying no mind to 
staging, and by indicating which of the inputs to the program are 
static and which dynamic, enables the system to produce a staged 
program automatically.  This is the ultimate simplification of the 
staging process.  However, since the very earliest work on partial 
evaluation, it has been clear that “paying no mind to staging” is 
impractical.  Much of the research in this area has been about 



precisely how the programmer can communicate staging 
information to the partial evaluator.  In the end, massaging the 
input to the partial evaluator so as to produce the desired residual 
program becomes an art in itself, and we are bound to inquire 
whether it is actually easier than specifying the residual program 
directly.  More fundamentally, partial evaluation systems are 
restrictive in the kinds of holes they allow:  The only abstractions 
available are those already present in the host language, so that 
many useful abstractions – on types, class names, and 
declarations, for example – are precluded. 
 
`C [5], DynJava [15], CodeBricks [2], et al.  These are systems in 
which the program explicitly constructs the generated program.  
Like Jumbo, all can be regarded as supporting an explicitly string-
based model, up to a point.  However, each imposes restrictions 
on what can be generated and what holes can be left, primarily to 
allow for efficient code generation at run time.  We believe that, 
while undoubtedly achieving the desired goal of efficient run-time 
code generation, these restrictions render these systems 
inapplicable for a variety of very important applications; we take 
up this theme in the next section. 
 
Aspect-oriented programming as embodied in AspectJ [10] is 
often considered a program generation system.  Like those 
systems, it allows the programmer to divide his program into 
small pieces that are assembled prior to execution.  However, it 
seems to us more helpful to think of AspectJ as a system that uses 
program generation rather than one that creates program 
generators.  The AspectJ weaver incorporates a fixed repertoire of 
program generating methods, and does not give the programmer 
the capability to produce new program generating methods at all.  
As an example of this, the Proxy implementation of section 4 was 
inspired by the presentation in [8]; the AspectJ implementation 
can be found at www.cs.ubc.ca/~jan/AODPs/.  It is interesting to 
see the program that is woven from the AspectJ specification.  
Although we have no reason to doubt that its behavior is just as 
the pattern requires, the program itself bears little resemblance to 
the one we produced, which is, we believe, what a programmer 
would have expected.  This remark is not intended as a criticism 
of AspectJ, but simply to draw a contrast between it and the kind 
of program generation systems to which Jumbo ought, in our 
view, to be compared. 

7. USES OF PROGRAM GENERATION  
One of the most vexing questions about program generation is: 
why isn’t there more of it?  Our view is that the tools have not 
been available that are both easy enough to use and general 
enough to produce a wide range of examples.  We do not need a 
“killer app” for program generation, because any particular 
program generator can be produced by a variety of methods, if the 
programmer is determined enough.  Rather, we need a facility 
allowing program generation to be used routinely by ordinary 
programmers [9]. 
 
We have emphasized generality in this paper because we believe 
that the compelling applications for program generation are not 
likely to be the first-order, “value-based optimization” 
applications which most systems can accommodate well.  Indeed, 
in our experience, it is difficult to find examples for which such 
optimizations are really compelling.    There is almost always a 
way to preprocess the static data that does not involve program 

generation; being able to employ a regular compiler that can 
optimize code at leisure gives a huge advantage over code 
generated at run time under severe time constraints. 
 
In our view, the important applications for program generation – 
especially, run-time program generation – will be those in which 
it is used to achieve modularity.  The combination of mobile 
computing – in which different parts of a program are obtained 
from different locations at run time or load time – and 
heterogeneous devices – in which a given program can run on a 
variety of different hardware/software platforms – provides an 
environment for such applications.  Heterogeneity implies the 
need for adaptability in the construction of the code for each 
device, and mobility implies that the components of the 
application come from diverse sources. Program generation will 
be needed to control not the cost of a single algorithm, but the 
gradual accretion of inefficiencies from the protocols through 
which the parts of the application communicate. 
 
Like many advances in programming languages and software 
engineering, program generation will show its real value in 
“programming in the large.”  This makes it especially difficult to 
prove that value.  The program generation community can help by 
implementing compelling applications – and making sure that 
program generation is seen to be essential to them – and by 
providing programmers with tools to do the job themselves. 

8. PROGRAM GEN. CONSIDERED HARD 
We have argued that the string-oriented model of code generation 
used by practitioners for compile-time program generation 
deserves more respect from academic researchers.  In Jumbo, we 
have attempted to preserve the model while producing run-time 
program generators, by using the concept of compositional 
compilation.  This entails certain compromises – most 
significantly, prohibiting the use of string destructor operations – 
that seem to us inescapable. 
 
In our opinion, one rarely-spoken reason that academics disdain 
the string model is that it leaves nothing to do.  It has so little 
structure that there is no apparent role for language or run-time 
support, and thus no employment for theoreticians.  However, 
compositional compilation adds enough structure that some 
interesting problems do arise. 
 
Jumbo is actually a rather superficial implementation of the idea 
of compositional compilation.  Not to be misunderstood: it is a 
substantial, and useful, piece of software implementing the entire 
Java language.  But it is only a first implementation.  There are 
difficult problems remaining to be solved both to improve Jumbo 
and to apply the idea to other languages. 
 
Lars Clausen’s PhD dissertation [3] on the design and use of 
Jumbo describes a proof-of-concept implementation of one such 
improvement.  It includes a set of source-level rewriting rules for 
Java that could be used to optimize the code generation process of 
Jumbo.  This is, in effect, a partial evaluation problem, but a hard 
one.  Clausen implemented these rules and applied them to show 
that performance improvements were possible.  However, the 
application of the rules was carefully guided by hand, and results 
were obtained for only a small set of simple cases.  No partial 



evaluation is incorporated in the running system.  Making one 
work is a difficult research problem. 
 
Another deep problem is reasoning about fragments in isolation.  
This is the problem that the partial evaluation-based systems 
avoid, but it is common to other program generation systems, as 
well as aspect-oriented programming.  It has been suggested that 
JML [14] can form the basis of a reasoning system for fragments.  
In any case, at this stage, it is difficult even to state the 
requirements on fragments, much less prove them. 
 
There is a host of broader questions concerning the applicability 
of our approach.  In principle, any language can be implemented 
by a compositional compiler, but that is in part because the notion 
of compositionality is rather flexible.  There are difficulties on 
both ends: some language features – notably, those whose 
implementation involves syntactic manipulation, like macros – 
and many back-end optimizations are difficult to define 
compositionally.  (Java is an easy target because it has no 
preprocessor, and the translation to JVM code essentially admits 
no role for global optimizations.)  If run-time program generation 
becomes widely used, it will be reasonable to consider, as a 
language design criterion, the ability of the language to be 
compiled compositionally. 

9. CONCLUSIONS 
Our view of program generation – this is true especially of run-
time program generation – is simply that the lack of appropriate 
tools makes it too hard for the ordinary programmer.  Some 
general-purpose tools for producing program generators are easy 
to use, but implement only subsets of languages, or impose other 
restrictions that programmers may find frustrating.  But program 
generation has great potential that will only be realized when 
ordinary programmers can use them for routine tasks – which 
means, when programmers can write them themselves. 
 
Jumbo is a tool that is easily learned, implements all of Java, and 
places few restrictions on the programmer.  We have given some 
examples to show both its ease of use and its range of applications 
(more can be found in the references).  We believe these are key 
features of any system that will achieve widespread use. 
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@* Fibonacci numbers. 
Program to compute the first 25 Fibonacci numbers. 
 
@* Main program. 
This is a skeletal program body around which the program is constructed. 
 
public class Fib25 { 
  public static void main (String[] args) { 
    final int MAX = 25; 
    @<Main variable declarations@> 
    @<Generate Fibonacci@> 
  }}  
 
@* Local (main) variables. 
Right now, we know we need a counter to count the first 25 numbers. 
@<Main variable declarations@> = 
  int count; 
 
@ Generation of Fibonacci numbers requires initial priming with two values.   
@<Main variable declarations@> += 
  int fib1 = 0, fib2 = 1, newfib; 
 
@* Generation of Fibonacci numbers. 
@<Generate Fibonacci@> = 
  @<Print titles and first two@> 
  count = MAX-2; 
  @<Loop to print remainder@> 
 
@* Printing titles. 
@<Print titles and first two@> = 
  System.out.println("Fibonacci numbers"); 
  System.out.println(fib1); 
  System.out.println(fib2); 
 
@* Generate the remainder of the list. 
@<Loop to print remainder@> = 
  while (count-- != 0) { 
    @<Compute new Fibonacci@> 
    System.out.println(newfib); 
    @<Reset last two Fibonacci values@> }  
 
@* Computing the next Fibonacci. 
Next Fibonacci number is fib_n = fib_n-1 + fib_n-2. 
@<Compute new Fibonacci@> = 
  newfib = fib1 + fib2; 
 
@* Reset the last two values. 
@<Reset last two Fibonacci values@> = 
  fib1 = fib2; 
  fib2 = newfib; 
 

Figure 1: Web for Fibonacci program (after Figure 8 from [4])  

public class Fib25 { 
  public static void main (String[] args) { 
    final int MAX = 25; 
    int count; 
    int fib1 = 0, fib2 = 1, newfib; 
    System.out.println("Fibonacci numbers"); 
    System.out.println(fib1); 
    System.out.println(fib2);    
    count = MAX-2; 
    while (count-- != 0) { 
      newfib = fib1 + fib2; 
      System.out.println(newfib); 
      fib1 = fib2; 
      fib2 = newfib; 
    }}}  

Figure 2:  Tangled program from Figure 1 



public class Fib1 { 
     
  public static void main (String[] args) { 
    new Fib1().genfib().generate(); 
  } 
     
  Code genfib () { 
  // Program to compute the first 25 Fibonacci numbers. 
    return $< public class Fib25_1 { 
                public static void main (String[] args) { 
                  final int MAX = 25; 
                  `Stmt(vardecls()); 
                  `Stmt(gen25fibs()); 
                } 
              } >$; 
  } 
     
  Code vardecls () { 
  // Right now, we know we need a counter to count the first 25. 
    return $< int count; >$; 
  } 
     
  Code gen25fibs () { 
  // Declare and initialize variables, then enter loop. 
    return $< `Stmt(initial_decls()) 
              `Stmt(generate_fibonacci()) >$; 
  } 
 
  Code initial_decls () { 
  // Generation of Fibonacci numbers requires initial priming with two values. 
    return $< int fib1 = 0, fib2 = 1, newfib; >$; 
  } 
     
  Code generate_fibonacci () { 
    return $< `Stmt(print_title_and_first_two()); 
              count = MAX-2; 
              `Stmt(loop_to_print_remainder()) >$; 
  } 
 
  Code print_title_and_first_two () { 
    return $< System.out.println("Fibonacci numbers"); 
              System.out.println(fib1); 
              System.out.println(fib2); >$; 
  } 
 
  Code loop_to_print_remainder () { 
  // The loop will run until count is zero. 
    return $< while (count-- != 0) { 
                `Stmt(compute_new_fibonacci()); 
                System.out.println(newfib); 
                `Stmt(reset_last_two_Fibonacci_values()); 
            } >$; 
  } 
 
  Code compute_new_fibonacci() { 
  // Next Fibonacci number is fib_n = fib_n-1 + fib_n-2. 
    return $< newfib = fib1 + fib2; >$; 
  } 
     
  Code reset_last_two_Fibonacci_values() { 
    return $< fib1 = fib2;  
              fib2 = newfib; >$; 
  } 
} 
 

Figure 3:  Jumbo version of web in Figure 1 



public class Fib2 { 
  public static void main (String[] args) { 
    new Fib2().genfib().generate(); 
  } 
     
  // Compute first 25 Fibonacci numbers. 
  Code genfib () { 
  // The key part of this algorithm is the body of the loop, which maintains 
  // the invariant: for some n >= 0, fib1 = F_n and fib2 = F_n+1. 
    return context($< newfib = fib1 + fib2; 
                      fib1 = fib2; 
                      fib2 = newfib; 
                      `Stmt(print($<fib2>$)) >$); 
  } 
     
  Code context (Code inner_loop_body) { 
  // Declare local variables, then establish invariant and maintain it in loop. 
  // Note that termination code is independent of the computation. 
    return class_container("Fib25_2", declare_vars(), establish_invariant(), 
             repeat(23, inner_loop_body)); 
  } 
     
  Code class_container(String class_name, Code decls, Code pre_loop, Code loop) { 
  // Class = declarations, code to establish invariant, and main loop 
    return $< public class `class_name { 
                public static void main (String[] args) { 
                  `Stmt(decls) 
                  `Stmt(pre_loop) 
                  `Stmt(loop) 
                } 
              } >$; 
  } 
     
  Code declare_vars () { 
  // These are the variables used in the loop body above 
    return $< int fib1, fib2, newfib; >$; 
  } 
     
  Code establish_invariant () { 
  // Set fib1 and fib2 so as to satisfy invariant 
    return $< fib1 = 0;  fib2 = 1; 
              `Stmt(print($<"Fibonacci Numbers">$)) 
              `Stmt(print($<0>$)) 
              `Stmt(print($<1>$)) >$; 
  } 
 
  Code repeat (int n, Code body) { 
  // Repeating by a fixed amount is easy 
    Name c = new Name("count");  
    return $< int `c = `Int(n); 
              while (`c-- != 0) `Stmt(body) >$; 
  } 
     } 
     
    // Auxiliary methods 
  Code print (Code subject) { 
    return $< System.out.println(`Expr(subject)); >$; 
  } 
} 
 

Figure 4:  Second Jumbo version of Fibonacci web 



 

static Code genProxy (String proxyname, MonoList decls, 
      Codefun safeFun, Codefun regularFun, Codefun unsafeFun) { 
  return $< 
    public class `proxyname implements RequestInt { 
      RequestInt subject; 
 
      `Field(decls); 
       
      public `proxyname (RequestInt subject) { this.subject = subject; } 
 
      public void safeRequest(String s) { 
        `Stmt(safeFun.apply($<subject.safeRequest(s);>$)); 
      } 
 
      public void regularRequest(String s) { 
        `Stmt(regularFun.apply($<subject.regularRequest(s);>$)); 
      } 
       
      public void unsafeRequest(String s) { 
        `Stmt(unsafeFun.apply($<subject.unsafeRequest(s);>$)); 
      } 
       
    } >$; 
  }   

Figure 6:  Simple Proxy Generator in Jumbo 
 

    static Code genProxy (String proxyname, 
                          MonoList decls, 
                          CodeMap methodMods) { 
    Same as previous version, but use lookup in methodMods, e.g. 
 
          public void safeRequest(String s) { 
            `Stmt(methodMods.get("safeRequest").apply( 
                                        $<subject.safeRequest(s);>$)); 
          } 
 

Figure 7:  Second Simple Proxy Generator in Jumbo 

class CountingProxy implements RequestInt 
{ 
  RequestInt subject; 
  int count = 0; 
 
  public CountingProxy (RequestInt subject) { 
    this.subject = subject; 
  } 
  
  public void safeRequest(String s) { 
    subject.safeRequest(s); 
  } 
     
  public void regularRequest(String s) { 
    subject.regularRequest(s); 
  } 
     
  public void unsafeRequest(String s) { 
    count++; 
    subject.unsafeRequest(s); 
    System.out.println(count); 
  } 
} 
   

Figure 5:  Proxy implementation in Java 



 
 

  public static Code genProxy( String proxyType, String interfaceName, 
                               MonoList newFields, CodeMap mods){ 
    MonoList body = new ArrayMonoList(); 
    Type subjectType = new Type(interfaceName); 
    body.add($Field< `Type(subjectType) subject; >$);  
    body.add(newFields); 
    body.add($< public `proxyClassName (`Type(subjectType) s) { subject = s; } >$); 
    body.addAll(genClassBody(interfaceName, mods)); 
   
    Code c = $< public class `proxyType implements `interfaceName { 
                 `Body(body) } >$; 
    return c; 
  } 
 
  static MonoList genClassBody(String interfaceName, CodeMap mods){ 
    MonoList body = new ArrayMonoList(); 
    Method[] methods = Class.forName(interfaceName).getMethods(); 
    for(int i=0; i<methods.length; i++) 
      if(! Modifier.isFinal(methods[i].getModifiers())) 
        body.add(genMethod(methods[i], mods)); 
    return body; 
  } 
 
  static Code genMethod(Method method, CodeMap mods){ 
    String methodName = method.getName(); 
    Codefun cf = mods.get(methodName); 
    Class retType = method.getReturnType(); 
    Class[] parameters = method.getParameterTypes(); 
    return genMethod(methodName, cvtToType(retType), cvtToType(parameters), cf); 
  } 
 
  static Code genMethod(String methodName, Type retType, 
                        Type[] parameterTypes, Codefun cf){ 
    Code delegation; 
    MonoList paramList = new ArrayMonoList(); 
    MonoList argList = new ArrayMonoList(); 
    for(int i=0; i<parameterTypes.length; i++){ 
      String argName = "__arg"+i; 
      paramList.add($Param< `Type(parameterTypes[i]) `argName >$); 
      argList.add($< `argName >$); 
    } 
 
    delegation = $<subject.`Name(methodName) ( `Args(argList) ); >$; 
    return $< public `Type(retType) `Name(methodName) ( `Params(paramList) ){ 
                `Stmt(cf.apply(delegation)) } >$; 
  } 
 
  static Type[] cvtToType(Class[] classes){ 
    Type[] types = new Type[classes.length]; 
    for(int i=0; i<types.length; i++) 
      types[i] = cvtToType(classes[i]); 
    return types; 
  } 
 
  static Type cvtToType(Class aClass){ 
    if(aClass.isPrimitive()){ 
      if(aClass == Boolean.TYPE)   return Type.boolean_type; 
      if(aClass == Character.TYPE) return Type.char_type; 
      // … seven more similar lines omitted to save space … 
    }else{ 
      return new Type(aClass.getName()); 
    } 
  } 
 

Figure 8:  Generalized Proxy Generator in Jumbo 


