
Routine Run-time Code Generation
Sam Kamin*

Computer Science Department
University of Illinois at Urbana-Champaign

+1 (217) 333-7505
kamin@cs.uiuc.edu

ABSTRACT
Run-time code generation (RTCG) would be used routinely if
application programmers had a facility with which they could
easily create their own run-time code generators, because it would
offer benefits both in terms of the efficiency of the code that
programmers would produce and the ease of producing it. Such a
facility would necessarily have the following properties: it would
not require that programmers know assembly language;
programmers would have full control over the generated code;
the code generator would operate entirely at the binary level. In
this paper, we offer arguments and examples supporting these
assertions. We briefly describe Jumbo, a system we have built for
producing run-time code generators for Java..

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – code generation.

General Terms
Languages.

Keywords
Run-time code generation; Java.

1. INTRODUCTION
A code generator is a program that produces other programs.
Almost all code generators fall into one of two categories:

• Binary-level, run-time (or load-time) code generators.
The best-known examples are the just-in-time compilers
for languages like Java, C#, and Self [10,28]. These
programs are in everyday use, but they are few in
number. They are written by “systems programmers”
possessing a deep knowledge of machine-level
programming, rather than application programmers.

• Source-level, compile-time code generators. The best-
known examples here are parser- and lexer-generators.
But simple, ad hoc compile-time code generators are
very common – far more than run-time code generators
– because they can be written by a programmer knowing

only the standard programming language. The scripts
employed in source distribution of programs that modify the
program source by, for example, inserting the correct local
path names for libraries, are common examples. Templates
and macros are also, in effect, simple program generators.
Taking all forms of compile-time code generation together, it
is a very common technique.

The argument of this paper can be summarized concisely: if the
benefits of these two classes of code generators could be realized
in a single system, the combination would be much more powerful
than the sum of the two classes separately. The widespread
employment of run-time code generators is constrained by the
difficulties of writing them; the employment of compile-time
code generators is constrained by the fact that they can be
employed only where a compatible compilation environment is
known to exist. A system which could be used by ordinary
programmers to create run-time code generators would open up
many possibilities. This is what we call routine run-time code
generation.
We are further advocating that run-time code generators can be
obtained by changing what is meant by “object code”: instead of
“executable machine language,” we prefer the definition
“executable program generator.” That is, we are suggesting that,
as a routine matter, programs might be delivered in the form of
code generators. More generally, components might be delivered
in the form of parameterized code generators. Taking a page from
functional programming, we need merely extend this notion to
allow for code generators parameterized by other code generators
(themselves possibly parameterized by yet other code generators),
and the result is a completely general, yet completely binary,
RTCG facility. In other words, with traditional object files as the
primitive types, run-time code generators of great variety can
result from employing the full domain of higher-order values.
In summary, we propose that RTCG can and should be a routine
tool used by application programmers. We are mainly concerned
in this paper with arguing for the “should” part of that
proposition. But the argument would be idle if we had no idea
about the “can” part. Accordingly, we will briefly describe
Jumbo, the system we have built for the creation of run-time code
generators in Java.
The paper is organized as follows: We begin by discussing what
we consider to be the most essential properties of a system to
support routine RTCG, why routine RTCG is desirable, and how
existing approaches succeed or fail in exhibiting the properties we
have listed. The heart of the paper is sections 5-10, in which we
discuss the potential applications of such a system. (Section 10,
on using RTCG to provide higher-level programming facilities, is
much the longest of these sections.) We follow this by describing

*Partial support received from NSF CCR-9619644.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

ACM SIGPLAN Notices 44 Vol. 38(12) Dec 2003

our approach to creating such a system, and give a brief
description of the Jumbo system for creating run-time code
generators in Java. A conclusions section completes the paper.

2. PROPERTIES OF A ROUTINE RTCG
SYSTEM
Manifestly, run-time code generation is not routine. This despite
the fact that its benefits have been touted for many years. We
believe this is because the process of creating run-time code
generators has never been properly supported in existing
languages – or, more precisely, in existing compiled languages.
Here, we discuss some key properties we believe a system to
support creation of run-time code generators should possess. In
section 4, we will review some of the prior art in this area, to see
where existing systems succeed or fail along these lines.
In our view, then, a system to allow for routine run-time code
generation would have these properties:
Programmer control: The programmer should be able to say
exactly what program is to be created. Some restrictions to
enforce safety or efficiency requirements may be necessary, but
they should be minimized. (Actually, we would go further: We
believe that in the current state of our knowledge of how RTCG
might be used, it would be premature to place any restrictions on
programmers’ uses of it. But we acknowledge that such
restrictions may, at length, turn out to be useful.)
Source-level specification: If programmers are to be in control,
and if the system is to find routine use, programmers must be able
to speak to the system in source language. Most current systems
that perform run-time code generation – just-in-time compilers are
the best known examples – cannot be expressed in source code;
such code generators fall outside the scope of what we are
advocating. (Of course, we are not saying that those code
generators are bad, only that they are inherently exotic and
unlikely to be routinely created by application programmers.) On
the other hand, many kinds of code generation can be expressed in
source. These include, obviously, anything currently done by
compile-time code generators, as well as the generators produced
using partial evaluation-based “meta-programming” techniques.
It also includes transformations which are, for varying reasons,
done at the binary level [15,19], but whose semantics can be
explained at the source level.
Run-time code generation: The central argument for run-time
code generation is that it presents opportunities for optimization
that are not available at compile time, or even at load time [16].
We will shortly make another argument for this property from the
notion of deployability.
Binary-level implementation: We mean by this that the inputs and
outputs of the code generator should be binaries rather than
source code. As stated earlier, source code generation is viable
only when the compilation environment is certain to be
appropriate for the generated code. Compilation environments are
highly complex – requiring the correct version of the compiler
and supporting libraries in the correct places on the compilation
platform – and, more to the point, highly variable. Run-time
environments, while also complex, are comparatively
standardized. Another problem with generating source code is
that the expense of compilation limits the range of applicability of
the generator. Yet another is that many companies do not like to

distribute source code, and there is no reason to think this
reluctance would not extend to machine-generated code; limiting
the commercial contribution is not a good way to encourage
routine code generation.
(There is an ambiguity to the term “binary.” Even traditional
object files do not actually contain executable code – some
translation is done in the linking process. In principle, one might
argue that AST’s are binaries, but just have a more complex
translation process; [18] says essentially this. Indeed, one could
even say the same about source code! In this sense, being
“binary” is a matter of degree rather than kind. In any case, the
essential point at issue is the complexity and, above all, the
standardization of the translation process. Traditional binaries
have to be standardized because the machine language is fixed by
the hardware; virtual machine codes have to be standardized –
thought not quite as much – because of the difficulty of
distributing new virtual machines to all clients. ASTs and source
programs could, in principle, be perfectly standardized; in
practice, this is unlikely ever to happen.)
The last two properties are related to deployability, a notion that is
considered critical in the software components community [29].
Indeed, deployability – broadly speaking, the ability to obtain and
employ a software artifact easily – is generally considered part of
the very definition of the term “software component.” Examples
include applets, COM components, and traditional subroutine and
class libraries. It is also generally agreed that the intervention of a
compiler when employing a piece of software renders that
software inherently non-deployable. (In their survey [21], Luer
and van der Hoek write, “the component must be prepackaged,
which typically means that it is distributed in binary form rather
than source code. Pre-packaging has the benefit that it avoids
having to rely on a user to configure and compile source code,
which, to date, remains an error-prone process that typically
requires significant technical skills.”) Thus, our insistence on
binary-level operation is, in part, because we want code
generators to be as deployable as other software components.
Deployability is also enhanced when a component can be loaded
dynamically (like applets and COM components). This provides
another argument for insisting on run-time code generation: there
would be no point in providing a code generator that could be
loaded at run time if it could not be used at run time.
If a mechanism having these properties were available for
mainstream, compiled languages, it would open up numerous
opportunities for producing more adaptable – and therefore more
useful – programs. Consider the example of Lisp. Lisp
implementations are typically interpretive, which means that,
broadly speaking, the compilation and execution environments are
the same, eliminating the distinction between compile-time and
run-time. A compile-time code generation facility is a run-time
code generation facility; since programs are retained in source
(that is, S-expression) form, a source-based code generation
system is a “binary”-based system. Thus, Lisp should be a good
test case for our claims. And, indeed, program generation has
long been a standard tool in the Lisp programmer’s toolkit. (Paul
Graham [8] gives a lively and forceful discussion on this point.)
Consider the example of encapsulated data types. Early versions
of Lisp – like other languages of its era – did not have a built-in
encapsulated data type facility. In the 1970’s, a great variety of
such facilities were introduced into Lisp. This was done by using
the macro facility. Eventually, these features became “official.”

ACM SIGPLAN Notices 45 Vol. 38(12) Dec 2003

Without the experimentation made possible by the macro facility,
these might have taken a very different form and taken much
longer to develop.

3. WHY SHOULD RTCG BE ROUTINE?
In the following sections, we will describe some of the ways in
which routine run-time code generation might help solve
computing problems. Again, we emphasize that the point here is
not to encourage the occasional use of RTCG for specialized
purposes; neither are we advocating any particular run-time code
generator or area of potential application of RTCG. Rather, we
want to give the ordinary application programmer the power to
create run-time code generators.
Here, we state briefly some benefits that can result from supplying
the programmer with this tool. Our list is merely a suggestion of
what might be possible. In the heart of this paper – sections 6-10
– we elaborate on this list. However, as with any other
programming facility, we would anticipate – and this is really the
heart of the argument we are offering – that, given the power,
programmers will make deeper and more imaginative uses of it
than we can possibly anticipate.
Run-time efficiency for first-order programs: It is well known
that many computations can be sped up by preprocessing some of
the data (the static, or relatively static, data) before consuming the
remainder of the data (the dynamic part).
Run-time efficiency for higher-order programs: Highly modular
programs lose efficiency by virtue of the boundaries between
components. The entire program is known by run-time, if not
load-time. The case is similar to the first-order case except that
the static data consists of the late-bound components with respect
to which the program is, in effect, parameterized.
Code compaction: One benefit of generating code at run-time is
that some parts of the code may become unnecessary, and other
parts may be subject to substantial simplification. This can be
particularly important when the target platform is resource-
limited.
Code adaptation: Much has been said recently about the need for
software to be highly adaptable in the coming world of ubiquitous
embedded devices. The scenario often invoked is when an ad hoc
community of small devices receives a new “visitor” who speaks a
language never before heard. Assuming there is some primitive
ground on which communication can begin, the devices must
learn to adapt to this new interlocutor: they must determine what
it wants, what it can offer, and how to cooperate to achieve the
overall goals of the community. In more vulgar terms, they must
all exchange drivers and adapt them for efficient communication.
Programming language expressiveness: A constant theme – one
might even say the constant theme – of programming language
and software engineering research is “raising the level” at which
programmers express their solutions; another way of saying this
is that the programmer should be able to express her design, not
just its implementation. Each language attempts to do this, within
its own domain and under its unique constraints. Beyond the
development of a new language, one method of “raising the level”
is to use macros. Another method is to embed a domain-specific
language, admitting, within its scope, more concise expression or
more efficient execution or both. Broader efforts with the same
goals include various component methodologies [21], aspect-

oriented programming [17], and intentional programming [26], all
of which can be regarded – to a first order of approximation – as
code generation systems. If these methods could be employed at
the binary level, it would make them more portable and more
deployable, and accordingly more routine.
In none of these areas does RTCG provide a “turn-key” solution.
The difficult problems in adaptive computing, efficient
component interaction, and so on, are deeper than any
implementation technique can solve. But RTCG can be an
enabling technology: it can permit programmers to create ad hoc
solutions to these problems without incurring large infrastructure
costs or overcoming a large learning curve.

4. RELATED WORK
Code generation is not a new concept, nor is the idea of creating
tools to facilitate it. Our contribution is in emphasizing the
importance of combining full programmer control, source-level
specification, binary-level operation, and run-time code
generation. Existing systems – with a few exceptions – fail to
realize this combination. Of course, they have other properties
that we have not emphasized, such as high efficiency, ease of
programming, or static analyzability. Still, we would claim that
missing any of the four properties we require precludes routine
usage.
The biggest category of related systems is those based on partial
evaluation [5]. In these systems, program inputs are classified as
static or dynamic. When the static data arrive, a program is
generated that is expected to process the dynamic data more
efficiently than the original program would have done. Partial
evaluation has some decided advantages over other approaches.
In particular, it is easier to use because the programmer only
writes a single program; the division between program generator
and generated program (the “staging” of the computation) is
automatic. However, it fails to have all the properties we have
enumerated. Although most partial evaluation-based systems
have some form of programmer annotation to allow for greater
control of the staging, the degree of programmer control is
inadequate (see section 6 for an example). Indeed, the approach
is inherently limited, in this way: the generated program cannot
contain anything that was not, in some sense, already contained in
the generating program. For example, in typed languages [30],
the generated code cannot contain new type declarations; since
the original program, prior to staging, must have been complete
and type-correct, it is impossible for new types to have a place in
the generated code. However, the generation of types is
frequently part of the program generation process; we view this
as failing to give the programmer sufficient power over the
generated code. Furthermore, these systems seem to be inherently
compile-time, or, at best, load-time. (Hence, data are “static” and
“dynamic” rather than, say, “earlier” and “later.”) In particular,
there is no facility in any of these systems, as far as we know, for
generating code more than once during execution.
`C [6,24] comes close to possessing all four properties. For
example, new functions can be created and compiled at any time
during execution. However, like partial evaluation systems, `C
does not permit the dynamic construction of new types. Also, for
efficiency reasons, some restrictions are placed on the kinds of
code that can be filled into holes, again limiting the programmer’s
freedom.

ACM SIGPLAN Notices 46 Vol. 38(12) Dec 2003

DynJava [22] is a system that resembles Jumbo, the system we
have built to implement our ideas (see section 12). It is not our
purpose here to give a technical comparison of these two systems.
However, DynJava does have static type-checking and, as we have
noted above, this restricts the types of code programmers can
generate.
Intentional programming (IP) [26] has similar goals to ours: to
create highly adaptable programs. It does this by representing
programs as trees and giving programmers the opportunity to
create tree transformers easily, thereby creating new language
features. IP, however, operates at the level of abstract syntax
trees, so is not binary-level. For the reasons given earlier, we
believe this creates a significant barrier to widespread adoption.

5. SPECIFYING PROGRAM
GENERATORS
Throughout the paper, we will use Java as the language in which
to give examples. We propose to use a very simple method of
constructing code generators: specify programs as strings. In
other words, we will treat Java as if it were an interpreted
language. As noted above, the disadvantage of this approach is
that it is strictly compile-time – that is, it can be used only on
systems known to have the correct compilation environment. For
now, we are not concerned with how to create a mechanism that
has all four properties we require; the first two properties suffice
for what we want to illustrate.
We would, however, like to make a small notational change to
Java strings to make them better applicable to our purposes. First,
we will augment the normal double-quote notation for string
constants with a “bracketing” notation: instead of “I’m a
string” , we will write $<I’m a string>$. We will also
employ an “anti-quotation” mechanism, as follows: Within a
quoted string, the notation `(expression) will be used to
indicate that the result of evaluating expression will be a
string that is to be spliced into the middle of the containing string.
In short, in this extension of Java:

$< … `(---) … >$ ≡≡≡≡ “…” + (---) + “…”

The inner expression (---) is an arbitrary string-valued
expression. In particular, it may contain strings as
subexpressions, and these may use the new notation and may, in
turn, contain anti-quoted parts. When the anti-quoted expression
is a single identifier, we will omit the parentheses. We should add
that, in contrast with the double-quote syntax, our brackets allow
embedded line breaks.
The idea of quote/anti-quote is of considerable antiquity [1]. The
specific notation used here is similar to that used in MetaML [30].
However, there is a significant difference in its use in, say, Lisp,
and its use in MetaML. In Lisp, it is a mere abbreviation. The
strings (actually, S-expressions) created using anti-quotation are
just strings, subject to all the string operations provided by the
language. In MetaML, the values inside the anti-quotation
brackets are not strings at all, but values of type “code.” These
values have none of the string operations, just an implicit
“compile” operation applied at some point later in the
computation. There is a bright line between these two notions of
quotation. For reasons to be given later (see section 11), we wish
to state clearly on which side of this line we stand. We will never
perform ordinary string operations on strings constructed using

our quotation syntax. Aside from using them to construct more
strings, the only thing we will do with them is to (implicitly)
apply a compile operation. We give a number of examples in this
paper, the primary purpose of which is to show that a wide variety
of code generators can be written under this constraint.
There are no other restrictions on what code fragments can be
created. In particular, variable capture is possible. Enforcing
“hygienic” uses of variables is a feature – like type-checking –
that arguably makes the use of program generation safer, but we
repeat our claim that, in the current state of our knowledge, such
restrictions are premature. Both the creation of new types and the
capture of free variables occur naturally in program generation,
and we have seen no compelling evidence that the safety gained
by imposing restrictions is worth the power lost. (Concerning
variable hygiene, Graham [7] says “[hygienic macros] are a
classic example of the dangers of deciding what programmers are
allowed to want.” Of course, not everyone agrees.)

6. EFFICIENCY IN FIRST-ORDER
PROGRAMS
The simplest applications of RTCG exploit static, or relatively
static, data for efficiency [16]. Examples include propagation of
run-time constants, loop unrolling, sparse array calculations, and
recursion unfolding.
Although this idea has been advocated for many years, it is still
only rarely used in practice. We believe the reason for this is that
programmers have not been provided with a facility having the
properties listed earlier. Above all, the available methods do not
allow adequate programmer control. Absent programmer input, it
is extremely difficult for a compiler or run-time system to know
when, where, and how RTCG will be useful.
Consider the problem of unrolling a loop. Efficiency may be
gained in this process both by eliminating the loop control
overhead and by presenting a longer straight-line code sequence
to the processor, allowing for better pipeline utilization. Although
some optimizing compilers will do this for some loops, it is, by
and large, impossible to do at compile time, as the iteration count
for the loop is rarely known that early. Thus, a run-time code
generation facility is essential. In fact, the iteration count of a
particular loop need not be constant, but might change slowly
enough that code can be generated for the loop each time the
count changes. Since the rate of change of this iteration count is
normally a function of the expected use of the program rather than
any intrinsic properties of the program, it is impossible to have the
unrolling done automatically. At the very least, we need a facility
whereby the programmer can indicate exactly when to generate
new, unrolled code for the loop. But now another problem
intrudes: the unrolling process itself may be more subtle than
simply repeating the loop body multiple times. For instance, it
may be necessary to unroll the loop only partially, to avoid
creating an overly long code sequence. The optimal unrolling
may depend upon numerous factors, and it is unrealistic to expect
the system to discover it automatically. Indeed, it may be difficult
for the programmer to determine it as well, but with sufficient
control over the outcome, the programmer is at least empowered
to experiment with different arrangements. There is no reason to
think that the efficiency issues arising in this context are so much
more complex than those arising in ordinary programming that
programmers should not even be allowed to deal with them.

ACM SIGPLAN Notices 47 Vol. 38(12) Dec 2003

No method in current use allows for sufficient programmer
control to handle the various forms of loop unrolling in any easy-
to-use package. Keppel et al. [16] allowed for complete
programmer control but required that the dynamically generated
parts of the program be written in machine language (or an
abstract intermediate language), rather than in source. Lee and
Leone [20] provide minimal control over the loop unrolling
process. They do not offer a solution to the problem of over-
unrolling. Partial evaluation systems generally provide little
control over the ultimate form of the generated code. Some
partial evaluation-based systems offer enough programmer control
to solve the problem of when to unroll a loop [9,25], but we know
of none where the user can direct the unrolling process to the
extent of allowing for partial unrolling.
On the other hand, we would claim that the problem is not
inherently that difficult. Imagine that a programmer has available
the kind of simple, compile-time code generation facility we have
described above. (Most of the code shown here is from [14].) In
the simplest version of the problem, the programmer has a piece
of code S that is to be repeated, say, 100 times. Let us stipulate
that the code is in a critical spot, that loop control is a large
fraction of the execution time, and that over-unrolling is not an
issue; in other words, let us assume that completely unrolling the
loop would be beneficial. Repeating the code 100 times – that is,
manual unrolling – has obvious disadvantages from a software
engineering perspective.
In a class Unroll, the programmer might define a method
unroll(String, int), where the first argument is the loop
body and the second the number of repetitions:
 static String unroll (String s, int n) {
 if (n==0) return $< >$;

else return $< `s `(unroll(s, n-1)) >$;
 }

For example, the expression Unroll.unroll($<
System.out.println(10); >$, 3) yields
 System.out.println(10);
 System.out.println(10);
 System.out.println(10);

Of course, the body of a loop normally makes some reference to
the index variable in the loop. The simplest method is to have the
user supply the name of the index variable and have the unroller
set it correctly for each iteration (note that the inner call to
unroll refers to the previous version):
 static String unroll (String s, String i, int n)
 { return $< `i = 0;
 `(unroll($< `s `i++; >$, n)) >$;
 }

Then, Unroll.unroll($< System.out.println(v); >$,
$< v >$, 3) would produce
 v = 0;
 System.out.println(v); v++;
 System.out.println(v); v++;
 System.out.println(v); v++;

However, for reasons that will become clear in our next example,
we prefer a different solution. In this approach, the client of the
unroller supplies the loop body in the form of a function that,

given a loop index, creates the loop body. Thus, the client
supplies a function object implementing the interface
 interface Stmtfun {
 public String iter (String i) ;
 }

The unroller can now create an index variable to supply to the
loop body, but we prefer to have the client supply it himself, just
to avoid the logical complexities of using name generation
(although it is certainly possible, and sometimes necessary, to use
it). The new unroller is
 static String unroll
 (Stmtfun F, String i, int n) {
 if (n==0)
 return $<`i = 0;>$;
 else return $< `(unroll(F, i, n-1))
 `(F.iter(i))
 `i++; >$;
 }

We get the effect of the previous call by defining
 Stmtfun F = new Stmtfun () {
 public String iter (String indx) {
 return $< System.out.println(`indx); >$;
 }
 };

and then calling Unroll.unroll(F, $<v>$, 5).
These are, of course, simple examples of unrolling, and within the
capabilities of numerous existing technologies (most obviously,
partial evaluation). However, it is well known that, especially for
large loops, unrolling may actually result in slower execution; the
savings in loop control are overshadowed by the cost of loading
the larger code and by the pressure it places on the instruction
cache. Thus, the programmer may decide that efficiency is to be
gained by partially unrolling the loop. The partial unroller creates
a loop the body of which contains several copies of the original
loop body in sequence. The number of copies is referred to as the
block size. The loop repeats this sequence often enough to make
up the total number of required iterations. If the block size does
not divide the iteration count evenly, some extra copies of the
body are added at the end. One final detail is that there is no
point in including the “outer” loop if its iteration count would be
less than two.
Here is our version of the partial unroller:
 public static String unroll_part (
 String i, String init, int incr,
 int iterations, Stmtfun F, int BlockSize) {
 int loops = iterations/BlockSize,
 leftover = iterations%BlockSize;
 if (loops < 2)
 return unroll(i, init, incr, iterations, F);
 else
 return
 $< for (`i = `init;
 `i < `init+(loops*BlockSize*incr);) {
 `(unroll(i, i, incr, BlockSize, F))
 }
 `(unroll(i, i, incr, leftover, F))
 >$;
 }

Note that in this form of unrolling it is not possible to know the
exact initial value of the inner loop’s index variable, since that

ACM SIGPLAN Notices 48 Vol. 38(12) Dec 2003

value changes at each iteration. Thus, the partial unroller uses a
more complicated version of the full unroller:
 public static String unroll (
 String i, String init, int incr,
 int iterations, Stmtfun F) {
 String C = $< >$;
 for (int x=0; x<iterations; x++)
 C = $< C
 F.iter(`init+(x*incr)) >$;
 C = $< C
 `i = `init+(iterations*incr); >$;
 return C;
 }

Note, by the way, that in this case the function object F is not
applied simply to an iteration variable, but rather to an expression
whose value is equal to the value the iteration variable would have
had in the normal loop. (This assumes, of course, that there is no
assignment to the iteration variable within the loop.) This is why
we made the decision earlier on that the loop body should be a
function.
To complete this example, the call
Unroll.unroll_part($<i>$, $<0>$, 1, 500, F, 6);
yields
 for (i=0; i<0+498;) {
 System.out.println(i+0);
 System.out.println(i+1);
 System.out.println(i+2);
 System.out.println(i+3);
 System.out.println(i+4);
 System.out.println(i+5);
 i = i+6;
 }
 System.out.println(i+0);
 System.out.println(i+1);
 i = i+2;

One can argue about whether this type of coding is overly
complex or error-prone; it does not seem to us to exceed some
threshold that is never approached in ordinary programming.
One can also argue about whether a truly general-purpose loop
unroller can ever be constructed. In fact, we would say that it is
unlikely. But that is all the more reason why the program
generation capability should be put in the hands of ordinary
programmers, so that they can deal with the complications (and
simplifications) that arise in their particular application.

7. EFFICIENCY IN HIGHER-ORDER
PROGRAMS
Higher-level abstractions usually introduce some run-time cost.
Implementing the abstraction – that is, maintaining the illusion for
the application programmer that the underlying system has
properties that it does not, at its most primitive level, have – has
an associated run-time cost. Since these abstractions are built on
top of yet other abstractions, the inefficiencies multiply. In most
cases, this is not a critical problem, but its hidden effect is to limit
the kinds of abstractions that the system designer considers
building and the programmer considers using. There are
numerous examples:
Module boundaries. The effect of virtually all higher-level
module systems is, in part, to increase the number of function
calls made by the running system. The clearest example is class

libraries, where even access to a field in an object requires a
function call. Programmers and language designers engage in
numerous machinations – often violating information-hiding
principles – to eliminate this cost.
System layer boundaries. These are a notorious source of
inefficiency in operating systems and middleware [CHL+98].
Programmers cope by, in effect, ignoring the system layer
structure when possible; for example, efficient network protocol
implementations integrate functions across layers [3] rather than
following the layers as designed.
Virtual machines. This is one abstraction for which RTCG is in
routine use, under the name “just-in-time compilation” [10,28].
Higher-order functions. Functional programming languages have
often led the way in providing abstractions for programmers; the
higher-order function is the typical abstraction here. Other
languages have adopted the concept of higher-order functions;
examples are the increasingly common use of function objects and
callbacks in object-oriented languages, and such features as
iterators (which provide a kind of “map” operation in imperative
languages). Again, increased function calling imposes an
efficiency penalty.
Polymorphic functions. This is another example of a useful
abstraction in higher-order languages. It reduces the
programmer’s burden by allowing a single copy of a function or
class to be used in differing circumstances. In most languages, it
is implemented by “boxing” all values, imposing an otherwise
unnecessary cost on computations that involve primitive values.
Memory management. A crucial implementation technology
pioneered in higher-level languages (such as Lisp), automatic
memory management has now reached the mainstream. It comes
with a high run-time cost, which extensive research has
significantly reduced but not eliminated.
For most of these cases, the principal cost of the abstraction is in
the form of extra function calls. For virtual machines, the
problem is sufficiently constrained that significant benefits are
obtained from automatic RTCG. However, that does not always
work. For example, consider polymorphic collections – that is,
collections of Object instances – in Java. These entail what
may be a substantial cost in casting (boxing and unboxing)
primitive values.1 The run-time system cannot know that a certain
collection is bound to contain, say, integers for its entire life, so it
cannot optimize that collection. The programmer’s only recourse
is to write his own, monomorphic, collection class.
In C++ this cost is avoided by using templates, a compile-time
mechanism. Here we show how to accomplish the same effect
using strings (see also [14]). Note that in generating a new
collection type in Java, one must create two classes: the
collection class itself and a class of iterators for that class. Here
we present a generator for monomorphic vectors. The method
String makeVectorName (String) produces the name of
the new vector class, and String makeIteratorName
(String) produces the name of the iterator class for that new
vector class.
 String vname = makeVectorName(type);

1 Parametric polymorphism eliminates the explicit casts, but not

the boxing and unboxing.

ACM SIGPLAN Notices 49 Vol. 38(12) Dec 2003

 String itname = makeIteratorName(type);

 String vectorClassDefs =
 $<public class `vname { // vector class

 `elttype[] elements;
 int numelements;

 public `vname() { // constructor
 elements = new `elttype[10];
 }

 public void add(`elttype o) { ... }
 ...

 }

 public class `itname { // iterator class
 ...
 }
 >$;

Some additional, but routine, code is needed to insure that no
particular instance of this generic code is generated more than
once. This is contained in the method String newVector
(String); the latter returns the code needed to create a vector
of the given type. Use of this generator is not much different from
the use of templates in C++; this code is assumed to appear
within a larger quoted fragment:

 `(vector($<int>$)) v = `(newVector($<int>$));

 for (int i = 0; i < vlen; i++) v.add(i);

 int sum1 = 0;
 for (`(iterator($<int>$)) i =
 v.iterator(); i.hasNext();) {
 sum1 += i.next();
 }

This provides no obvious advantages over templates (aside from
the fact that Java does not have templates). We believe it would
be advantageous if the collection-generating code could be
provided in binary and could generate binaries. It would make the
facility both simpler and less expensive to use – as simple and
inexpensive as using the current APIs.2

8. CODE COMPACTION
As computers become ubiquitous, an old concern is reasserting
itself: code size. Anticipated memory sizes, for all but the tiniest
devices, are much larger than the memories into which the
original “hero programmers” squeezed their code. Nonetheless,
relative to the kind of functionality they are expected to support,
these new devices are very small. There are still hero
programmers, of course, but they are in short supply. The

2 Frankly, it is not clear to us why a preprocessor is needed in

languages like C and C++ at all. The facility used here is nearly
as convenient and much more powerful. We suspect the
perceived need arises from the lack of a standardized, easy-to-
use string facility in those languages. The Java designers
evidently felt that a preprocessor was simply unnecessary, and
so provided neither it nor a quotation facility like ours. The
inclusion of a preprocessor in C#, where a standard string type
exists, is a mystery.

question is how to make programming small devices much more
convenient. Ideally, code to run in embedded devices should be,
to the greatest extent possible, obtained directly from a single
code base that covers larger devices as well. (Here, we are laying
aside real-time issues that are common in embedded devices and
considering only the effect of miniaturization.)
Consider just one example: the problem of “feature loading.”
Programs often have a multiplicity of features from which a client
can choose; the choice depends upon the client’s needs and
budget. The result of allowing this choice is that the programmer
must be capable of producing, easily, any one of countless
configurations of a single program. Many companies do just this,
often with the help of sophisticated compile time tools written in-
house. But what if the company wanted to distribute the entire
program as an adaptable component? With current technologies,
they could distribute the largest, most full-featured, version of the
program, with versions for every platform (a really fat binary), or
they could distribute the code itself, along with the entire
compilation environment. Either option has obvious and severe
disadvantages. Using RTCG, they would be able to distribute
code capable of producing the right version of the program for
any client.

9. ADAPTIVE PROGRAMS
Many writers have predicted a future in which numerous devices
cooperate to serve humans. These devices are of varying size,
levels of intelligence, reliability, and mobility; moreover, they
may or may not be familiar with, or even trusted by, one another;
yet they must cooperate. This is the general aspect of those
scenarios that fall under the heading of ubiquitous computing.
All the ways in which RTCG might be used come into play when
considering programs that need to survive in a dynamic
environment with constantly changing interlocutors. Adaptive
software is software that can respond gracefully to dramatic
changes in the computational environment. All software is
adaptive to some extent; the difference is the kind and quantity of
environmental changes the software can handle, and the resource
constraints under which the software labors.
A simple version of adaptation is adjustment to the target
architecture and operating system, which is frequently
accomplished in C/C++ programs using long sequences of
“ifdef’s.” Obviously, this could be accomplished using
quote/anti-quote syntax just as easily:
 $< class GenericCode {
 ...
 ... `((current_os == “Linux”)
 ? $<Linux code>$
 : (current_os == “Windows XP”)
 ? $<Windows XP code>$
 : ...
 : $< … default or error code … >$...
 ...
 } >$

Equally obviously, this method is much more powerful than
“ifdefs” in that the code associated with any particular
configuration can be obtained by any means available in the
language, including calculating it from a variety of static
parameters, or obtaining it from a website. It also provides the
opportunity to give more structure to these configuration
calculations by, for example, creating classes corresponding to

ACM SIGPLAN Notices 50 Vol. 38(12) Dec 2003

each platform. We might end up with something more concise
and more extensible:
 interface MachineType {
 String getPlatformSpecificCode () ;
 String getOtherPlatformSpecificCode () ;
 ...
 }

 MachineType currentPlatform =
 getCurrentPlatform();

 $< class GenericCode {
 ...
 ... `(currentPlatform.
 getPlaftormSpecificCode()) ...
 ...
 } >$

10. LANGUAGE EXPRESSIVENESS
RTCG is usually regarded as a low-level implementation
technique. It is transparent to the programmer in the sense that it
does not alter the programming language. We believe that this
view of RTCG is far too strained. Indeed, we believe that the
potential to provide high-level abstractions not previously
available to programmers is the most exciting – as well as the least
explored – area of application of RTCG.
Our evidence for this contention comes from experience with
other systems. Consider the use of macros, which are a (more or
less general, depending upon the language) form of compile-time
program generator. Macros serve both to improve efficiency and
increase expressiveness of the underlying language. The latter
advantage has been realized most notably in Lisp systems, where
macros have been used extensively for years. The template
facility in C++ has also been used widely to raise the level of
abstraction of programming, while at the same time – and this
point has been emphasized by Bjarne Stroustrup frequently in
public comments – offering the efficiency of non-generic code.
Facilities that increase programming ease are – by definition, one
might say – static facilities. That is, they are known to the
programmer and employed at compile time. Why then would we
be interested in RTCG in this context? We return to the notion of
deployability. We can make an analogy with ordinary procedures.
They are present at compile-time, it is true, but not as source code.
If they did have to be available as source code, this would
severely constrain their use. (C++ templates offer an example
[27].) Thus, even if we allow that the use of these features is
inherently compile-time, we would still claim that having them in
binary rather than source form would make a great difference:
they would be easier to deploy and less subject to piracy, and
therefore more likely to be widely developed and distributed.
We offer two examples: an implementation of the programming
idiom of “state machines” and an implementation of a domain-
specific language.
Programming idioms. In functional and object-oriented
languages, idioms like “divide and conquer” can be programmed
directly. But there is a cost in efficiency. As normally conceived,
such idioms represent a way to write programs. From this point
of view, the ability to express the general idea of the idiom is only
a partial solution. Using run-time code generation, the precise

program implied by the idiom can be expressed; this is a direct
implementation of the idiom.
An example is the implementation of state machines. The ability
to express the state transitions and actions – say, as function
objects – is quite different from the ability to produce a program
in which, following the standard idiom, states are program labels
and actions are statements. The efficiency with which the idiom
can be realized is one of its central attractions.
We present part of a simple implementation of finite-state
machines. In this implementation, a finite-state machine consists
of an array of states (numbered from zero), each containing an
array of transitions; each transition consists of a predicate to test
whether that transition should be taken, an integer giving the
target state of that transition, and an action to be taken when that
transition occurs. Predicates and actions are pieces of
parameterized code; specifically, a predicate is a function from a
string (an expression denoting the input character) to a string (the
condition to be tested), and an action is a function from an integer
(the target state) and a string (the input character) to a statement.
Rendering all of this into Java is a bit cumbersome:
 interface Predicate {
 String pred (String inputcharvar);
 }

 interface Action {
 String action (int nextstate,
 String inputcharvar);
 }

 public class Transition {
 Predicate pred;
 int nextstate;
 Action act;

 Transition (Predicate p, int s, Action a) {
 pred = p; nextstate = s; act = a;
 }
 }

 public class State {
 Transition[] transfun;

 State (Transition[] tf) { transfun = tf; }
 }

 public class FSM {
 String FSMclassname;
 State[] theFSM;

 FSM (String c, State[] M) {
 FSMclassname = c; theFSM = M;
 }

 String genFSMCode () { ... }
 }

We have omitted the definition of genFSMCode(), the code-
generating function itself, to save space, but we will show an
example of its output shortly.

With these definitions, we can define this finite-state machine:

ACM SIGPLAN Notices 51 Vol. 38(12) Dec 2003

with this code (mkLetterPred and mkAlphanumPred generate
the expressions to test for letters and alphanumeric characters,
respectively):
 Transition[] s0 =
 {new Transition(
 new Predicate () {
 public String pred (String ch) {
 return mkLetterPred(ch);
 }
 },

1,
 new Action () {
 public String action(int s, String ch) {
 return $<addToBuffer(`ch);>$;
 }
 })
 };
 State st0 = new State(s0);

 Transition[] s1 =
 {new Transition(
 new Predicate () {
 public String pred (String ch) {
 return mkAlphanumPred(ch);
 }
 },
 1,
 new Action () {
 public String action(int s, String ch) {
 return $<addToBuffer(`ch);>$;
 }
 }),
 new Transition(
 new Predicate () {
 public String pred (String ch) {
 return $<true>$;
 }
 },
 2,
 new Action () {
 public String action(int s, String ch) {
 return $<emitbuffer();>$;
 }
 })
 };
 State st1 = new State(s1);
 State[] Mstates = {st0, st1};
 FSM M = new FSM($<Ident>$, Mstates);

Because this specification is rather cluttered, we have underlined
the semantically meaningful parts; the rest is pure boiler-plate
required by Java for defining function objects and initializing
arrays. (In earlier work [12,13], we advocated the use of
functional languages to define program generators for Java, and
the results were, unsurprisingly, notationally neater.)

When the finite-state machine M defined in the last line gets the
message genFSMCode, it generates this code:
 class Ident {
 static void runFSM (InputSource in) {
 int theState = 0;
 while (true) {
 if (in.empty()) return;
 char ch = in.next();
 switch (theState) {
 case 0: if (('a' <= ch && 'z' >= ch)
 || ('A' <= ch' && Z' >= ch)) {
 addToBuffer(ch);
 theState = 1;
 }
 else ;
 break;
 case 1: if (('0' <= ch'9' >= ch)
 || ('a' <= ch'z' >= ch)
 || ('A' <= ch'Z' >= ch)) {
 addToBuffer(ch);
 theState = 1;
 }
 else if (true) {
 emitbuffer();
 theState = 2;
 }
 else ;
 break;
 default: return;
 }
 }
 return;
 }
 }

Domain-specific languages. DSL’s can be thought of as
specialized compilers for a subset of a given base language. For
example, an array-processing language might be built on top of a
general-purpose language by defining special data types and
operators. Given the understanding that only these prescribed
features will be used, more efficient object code could be
produced. This efficient code cannot be produced by the regular
compiler, because the latter is not privy to this understanding;
therefore, a separate program generator is needed.
We present as an example the “message specification language”
[2,23]. This domain comes from a military application in which
electronic message formats, described informally in terms of bit
fields and their allowable values, are to be translated to functions
to decode and encode such messages. Our presentation here is
based on an earlier code generator written in ML [11]; we refer
the reader to that paper for a more expansive explanation. We
give only the generator for the “decoding” function.
The goal of this code generator is to take descriptions like this
one:
 Field Name Size Range
 Course 3 001-360
 Separator 1 /
 Speed 4 0000-5110
 Separator 2 /

Time (group)
2 00-23
2 00-59

0 1
letter

letter or
number

other

ACM SIGPLAN Notices 52 Vol. 38(12) Dec 2003

and turn them into code to read messages. If the input is in a byte
array A indexed by inptr (counting in bits) and the output is to
go into a record called store, this should be translated to code
like this (assuming, for simplicity, some library operations like
outOfRange and getint):
 if (outOfRange(getint(A[inptr/8], 3), 0, 360))
 { abort(); }
 else {
 store.course = getint(A[inptr/8], 3);
 inptr = inptr - (inptr%8) + (8*3);
 }
 if (A[inptr/8]!="/”) { abort(); }
 else {
 inptr = inptr - (inptr%8) + (8*1);
 }
 if (outOfRange(getint(A[inptr/8], 4), 0, 5110))
 { abort(); }
 else {
 store.speed = getint(A[inptr/8], 4);
 inptr = inptr - (inptr%8) + (8*4);
 }
 if (A[inptr/8]!="/”) { abort(); }
 else {
 inptr = inptr - (inptr%8) + (8*1);
 }
 if (outOfRange(getint(A[inptr/8], 2), 0, 23))
 { abort(); }
 else {
 store.hour = getint(A[inptr/8], 2);
 inptr = inptr - (inptr%8) + (8*2);
 }
 if (outOfRange(getint(A[inptr/8], 2), 0, 59))
 { abort(); }
 else {
 store.minute = getint(A[inptr/8], 2);
 inptr = inptr - (inptr%8) + (8*2);
 }

As in [2], we do not attempt to map directly from the tabular
format, but instead embed operations in Java that provide a
facsimile of the table. In our implementation, this code is
produced as the output of the following Java code:
 Message course =
 MessageOps.infield($<course>$,
 MessageOps.asc2int(3, 0, 360));
 Message slash = MessageOps.delim("/");
 Message speed =
 MessageOps.infield($<speed>$,
 MessageOps.asc2int(4, 0, 5110));
 Message time =
 MessageOps.seq(
 MessageOps.infield($<hour>$,
 MessageOps.asc2int(2, 0, 23)),
 MessageOps.infield($<minute>$,
 MessageOps.asc2int(2, 0, 59)));

 Message fullmsg =
 MessageOps.seq(course,
 MessageOps.seq(slash,
 MessageOps.seq(speed,
 MessageOps.seq(slash, time))));

 Bitsource b = new Bitsource($<A>$, $<inptr>$);
 Recordfield r = new Recordfield ($<store>$);
 String msg = fullmsg.genmsg(b, r,
 $<abort();>$);

The string msg contains the code shown above (modulo
grooming). We now show how to implement the operations in
class MessageOps.

The central type here is Message, which is an interface type for
function objects:

 public interface Message {
 String genmsg (Bitsource bs,
 Recordfield r,
 String stmt);
 }

A Message is a function that takes (an expression denoting) a
location in the bit source bs and returns code to write appropriate
values into the record r, invoking stmt in case of an error.
MessageOps defines a collection of static methods on messages:
asc2int takes a certain number of bytes out of bs, makes sure
they represent a number in ASCII that falls in the proper range,
and puts them into r; delim checks for a delimiter in the input
stream and skips over it; infield is a message transformer,
taking a message and transforming it into a message that is nearly
identical except that it places its results into a given subrecord of
r; finally, seq performs two message extractions in sequence.
Here are their definitions (If is an auxiliary method):
 static Message delim (final String exp) {
 return new Message () {
 public String genmsg(Bitsource bs,
 Recordfield r, String stmt) {
 return If($< `(bs.getByte()) != `exp >$,
 stmt, bs.advanceByte()) ;
 }
 };
 }

 static Message infield (final String fname,
 final Message m) {
 return new Message () {
 public String genmsg(Bitsource bs,
 Recordfield r, String stmt) {
 return m.genmsg(bs, r.subfield(fname),
 stmt);
 }
 };
 }

 static Message asc2int (final int width,
 final int lo, final int hi) {
 return new Message () {
 public String genmsg(Bitsource bs,
 Recordfield r, String stmt) {
 return
 If($< outOfRange(getint(`(bs.getByte()),
 width), `lo, `hi) >$,
 stmt,
 $< `(r.deref()) = getint(
 `(bs.getByte()), width);
 `(bs.advanceNBytes(width));
 >$);
 }
 };
 }

 static Message seq (final Message m1,
 final Message m2) {
 return new Message () {

ACM SIGPLAN Notices 53 Vol. 38(12) Dec 2003

 public String genmsg(Bitsource bs,
 Recordfield r, String stmt) {
 return $< `(m1.genmsg(bs, r,
 $< abort(); >$))
 `(m2.genmsg(bs, r, stmt)) >$;
 }
 };
 }

 static String If (String c, String t,
 String f) {
 return $< if (`c) `t else `f >$;
 }

This kind of coding is familiar to functional programmers, though
perhaps tricky for those not used to it. We remind the reader that
function objects are used here to provide the required operations
without violating our rule: strings representing programs are
never subjected to any string operations except inclusion in larger
strings via anti-quotation.

11. WRITING RUN-TIME CODE
GENERATORS
The method we have used for giving examples in this paper can
be used to produce run-time code generators easily. After
producing the desired string, one has simply to invoke the
compiler on the execution platform and load the compiled code.
Why, in practice, is this so rarely done?
Programmers might blanch at the cost of invoking a compiler
while a program is executing, and certainly this is an important
consideration. Still, there are many long-running programs for
which the cost of compilation would almost certainly be paid off
with interest. The idea of producing such a run-time code
generator is not so much dismissed on efficiency grounds as, by
and large, never even considered. In our view, the underlying
concern is portability: for compiled languages, the simple method
described above requires that the target machine provide the
appropriate compilation environment – the correct version of the
compiler and libraries, all in the expected places. In fact, most
machines don’t even have compilers.3 Programmers are only
willing to use facilities that are present on almost all machines, or,
lacking that, are portable and simple to install. Compilers don’t
match either description.
Which brings us back to a point we made at the start of this paper:
routine code generation can be achieved by viewing “code” as a
primitive type and employing the full range of higher-order types
constructed from it. We claim that the use of such higher-order
code values is essential to realizing the promise of RTCG. It
permits us to make highly adaptable programs without dealing in
source code explicitly, or invoking a compiler.
The first remark we wish to make is an obvious one: Code
generators are functions, meaning that they need arguments before
they can produce code. Less widely appreciated is that those
arguments may themselves be code generators, which need their
own arguments. If Code is the type of primitive code generators,
a user might be asked to provide a function of type, say, int →
Code, to the run-time code generator, which will in turn produce

3 Academic computer scientists may forget this, since they rarely

see such machines in their own work.

some code. The run-time code generator therefore has the type
(int → Code) → Code. We wish to convince the reader that this,
and more complex, types are useful for the goal of making RTCG
routine.
There are two halves of the argument we need to make: First, that
higher-order functions arise naturally when RTCG is used for the
kinds of applications we have listed. We have been making this
argument implicitly throughout the paper; we make it more
explicit below. Second, and more subtly, we need to show that it
is worthwhile – even necessary – to make the use of higher-order
functions in this context explicit.
For the first prong of the argument, we needn’t do more than look
at some of our examples. Starting with the first, and simplest,
example – loop unrolling – we see immediately that the loop
unroller takes a statement-returning function as one of its
arguments; specifically, its type (treating function objects as
actual functions) is

 (Code → Code) × Code × int → Code
Indeed, every one of the examples in this paper includes higher-
order functions over Code.
To understand the second point – why higher-order functions
have to be used explicitly – consider the alternative: In traditional
macro systems like Lisp, code generation is accomplished by the
manipulation of explicit program representations. What might be
regarded in the abstract as higher-order operations on code (as
discussed above) are encoded as first-order functions over
program representations. For example, when constructing a loop
body for the loop unrolling code generator, instead of using a
function taking an identifier to a statement (that is, taking the loop
index variable to the loop body), we could use a function String
subst(String indexvar, String dummyvar, String
loopbody) that substitutes indexvar for occurrences of
dummyvar in loopbody.
Thus, a traditional source-level code generation system is based
upon a concrete (source code or abstract syntax tree)
representation of programs. When a complete program has been
constructed, a compiler is applied to produce executable code;
until then, the concrete representation is open to whatever
manipulations are permissible on such data. Our system is also
based on a concrete representation, but one that is restricted in the
operations that can be performed on it: only string concatenation
is permitted. To put it differently, holes can be filled in, but
existing code fragments cannot be modified.
The choice we are discussing, then, is nothing other than the
choice between using an abstract, encapsulated value (a Code-
producing function) and using a particular concrete representation
of that value (a program). The trade-off is, in large measure, the
familiar one: The concrete representation is more intuitive and
more flexible. At the same time, it is more dangerous to use, both
because the “invariants” can be violated and because the
representation is likely to change over time, invalidating programs
that depend upon it (even as its abstract meaning remains the
same). When the values in question are programs, additional
concerns arise: The concrete representation is, in effect, source
code, so the technique cannot be used without revealing source
code and requiring the presence of a compiler on the run-time
platform. Code-producing functions are a lot like concrete
representations of code, except that they can only do one thing:

ACM SIGPLAN Notices 54 Vol. 38(12) Dec 2003

generate code when supplied with appropriate arguments. This
reduction in flexibility is just the same as what happens when a
data representation is hidden in a class. In this case, one benefit is
that it allows the supplier to provide machine code (namely, the
code for the generator that will produce the desired machine code
for execution) rather than a concrete program representation.
Another, more fundamental, benefit is that it allows for code-
producing functions to be optimized in ways that the concrete
program representation cannot be. If a particular string (or AST)
may be altered by using destructor operations – as any string may,
in principle, be – then it is not possible to compile it ahead of
time. The commitment to leave each particular string alone until
it gets compiled allows the string to be partially compiled
statically, thereby optimizing the final, run-time code generation
process.
In short, our view is that the best way to promote a routine RTCG
facility is not to pass source code (or abstract syntax trees) among
computers, but rather to pass parameterized code generators
(possibly parameterized on other code generators).
Before ending this discussion, we wish to make one point of
technical clarification. In the above, we have used the type Code
as if it were synonymous with the type of machine language
programs (or, in the Java context, virtual machine programs). For
the idea we are espousing to work, Code cannot be simply
machine language. It must be a richer type, but one from which
machine language can be (efficiently) obtained. Details can be
found in the references [4,14].

12. JUMBO
We have developed a compiler for Java, called Jumbo [14], which
incorporates a quotation mechanism like the one employed in this
paper. The compiler works in conjunction with a run-time
compilation API that, like any Java API, is portable and easy to
install. The Jumbo compiler produces code that can be run on any
JVM system and, given the Jumbo API, can perform run-time
code generation. The client machine need not have a compiler
installed; as with any Java program, the API will be loaded when
it is first used.
Jumbo has all four properties we have insisted upon. As we have
seen in the examples of this paper, the programmer has complete
control over the construction of programs. The programmer does
not actually manipulate strings; the Java type system enforces
this, as the quoted program fragments are assigned type Code
rather than String. However, the specification of code
generators, as we have seen, feels very much like manipulating
strings; the crucial difference is that ordinary string operations
are not available. (In Jumbo, quoted program fragments must be
parsed, which raises some issues that do not come up when
manipulating strings; for that reason, the examples given in this
paper will not work in Jumbo as is, but must be modified
slightly.)

Jumbo is a complete implementation of Java. It can be used as an
alternative to javac for ordinary Java programs (and produces
virtually identical output), and it can be used to produce run-time
code generators. Aside from some restrictions imposed by the
parser, arbitrary Java code can be enclosed in quotes for run-time
execution.

Jumbo is described in [14] and can be obtained at
shasta.cs.uiuc.edu/Jumbo. The Jumbo versions of the examples
from this paper are also provided there.

13. CONCLUSIONS
Run-time code generation has many potential applications.
Despite this, for compiled languages, the use of run-time code
generation has never been popular. If the production of run-time
code generators were easier, clever programmers would likely
exploit that potential and, indeed, find many applications not yet
conceived of.
Furthermore, the production of run-time code generators is not
that difficult. Generating a program and invoking a compiler at
run-time are well within the capabilities of average programmers.
Still, the practice has not been adopted.
We believe that the difficulty is not technical, but, so to say,
bureaucratic. As long as “code” is considered to be synonymous
with “concrete program representation,” RTCG will entail
difficulties associated with the distribution of source code and the
vagaries of compilers (specifically, their tendency not to exist
when or where they are needed). We propose a new paradigm, in
which Code is a first-class value and run-time code generators are
regarded as higher-order values involving Code. No compiler is
needed at run time, and no source code is ever created at run-time,
much less revealed to the client.

14. ACKNOWLEDGMENTS
Many of these ideas were formulated during the development of
the Jumbo system and its predecessor; Lars Clausen was the chief
programmer of both systems, with Miranda Callahan and Ava
Jarvis making important contributions as well. Ralph Johnson
made helpful comments on a previous draft of this paper.
Miranda Callahan made many useful comments. I would also like
to thank the members of the program committee – particularly
Geoff Cohen, the paper’s “shepherd” – for their extremely useful
feedback.

15. REFERENCES
[1] A. Bawden. Quasiquotation in Lisp. In Proceedings of the

ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM-99). San
Antonio, Texas. January 1999. 22-23.

[2] J. Bell, F. Bellegarde, J. Hook. R.B. Kieburtz, A. Kotov, J.
Lewis, L. McKinney, D.P. Oliva, T. Sheard, L. Tong, L.
Walton, T. Zhou. Software design for reliability and reuse:
A proof-of-concept demonstration. TRI-Ada ’94. 1994.

[3] D.D Clark, D.L. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. ACM SIGCOMM. 1990.
200-208.

[4] L. Clausen. Optimizations in Distributed Run-time
Compilation. Univ. of Illinois PhD thesis. 2003
(forthcoming).

[5] O. Danvy, R. Glück, P. Thiemann, (eds.). Partial Evaluation.
Lecture Notes in Computer Science 1110. Springer-Verlag.
Heidelberg. 1996.

[6] D. Engler, W. Hsieh, M. Kaashoek. `C: A language for high-
level, efficient, and machine-independent dynamic code

ACM SIGPLAN Notices 55 Vol. 38(12) Dec 2003

generation. In 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’96). St.
Petersburg Beach, Florida. January 1996. 131-144.

[7] P. Graham. Being Popular. On-line article at
www.paulgraham.com/popular.html. May 1991.

[8] P. Graham. Revenge of the Nerds. Intl. ICAD Users Group
Annual Conference. Boston. May 2002. Expanded version
at www.paulgraham.com/icad.html.

[9] B. Grant, M. Mock. M. Philipose, C. Chambers, S.J. Eggers.
Annotation-directed run-time specialization in C. In Proc.
Conf. on Partial Evaluation and Program Manipulation
(PEPM). 1997. 163-178.

[10] U. Holzle. Adaptive optimization for Self: Reconciling High
Performance with Exploratory Programming. Stanford Univ.
CS Dept. Tech. Rpt. STAN-CS-TR-94-1520. 1994.

[11] S. Kamin. Standard ML as a meta-programming language.
Univ. of Illinois Computer Science Dept. September, 1996.
Available at www-faculty.cs.uiuc.edu/~kamin/pubs/.

[12] S. Kamin, M. Callahan, L.R. Clausen. Lightweight and
generative components I: Source-level components. In Proc.
First International Symposium on Generative and
Component-Based Software Engineering (GCSE'99),
September 28-30, 1999. 49-64.

[13] S. Kamin, M. Callahan, L.R. Clausen. Lightweight and
generative components II: Binary-level components. In
International Workshop on Semantics, Applications, and
Implementation of Program Generation (SAIG 2000).
Montreal, Canada. September 20, 2000. Lecture Notes in
Computer Science 1924. Springer. 2000. 28-50.

[14] S. Kamin, L.R. Clausen, A. Jarvis. Jumbo: Run-time code
generation for Java, and its applications. Conf. on Code
Generation and Optimization (CGO). San Francisco. March
2003. 48-58.

[15] R. Keller, U. Holzle. Binary Component Adaptation. UC
Santa Barbara Dept. of Computer Science. Tech. Rpt.
TRCS97-20. Dec. 1997.

[16] D. Keppel, S. J. Eggers, R. R. Henry. A Case for Runtime
Code Generation. Univ. of Washington Dept. of Computer
Science and Engineering Tech. Rpt. 91-11-04. November
1991.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J.-M. Loingtier, J. Irwin. Aspect-Oriented
Programming. Proc. European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241. June 1997.

[18] T. Kistler, M. Franz. A Tree-Based Alternative to Java
Byte-Codes. International Journal of Parallel Programming
27:1. February 1999. 21-34.

[19] G. Kniesel, P. Costanza, M. Austermann. JMangler – A
framework for load-time transformation of Java class files.
Proc. IEEE International Workshop on Source Code
Analysis and Manipulation. IEEE Computer Society Press.
2001.

[20] P. Lee, M. Leone. Optimizing ML with Run-Time Code
Generation. SIGPLAN Conference on Programming
Language Design and Implementation. 1996. 137-148

[21] C. Luer, A. van der Hoek. Composition environments for
deployable software components. UC Irvine Dept. of
Information and Computer Science Tech. Rpt. 02-18. April
2002.

[22] Y. Oiwa, H. Masuhara, A. Yonezawa. DynJava: Type Safe
Dynamic Code Generation in Java. 3rd JSSST Workshop on
Programming and Programming Languages (PPL2001).
March 2001.

[23] C. Plinta, K. Lee, M. Rissman. A model solution for C3I
message translation and validation. Software Engineering
Inst. Carnegie-Mellon Univ. Tech. Rpt. CMU/SEI-89-TR-12.
December 1989.

[24] M. Poletto, W.C. Hsieh, D.R. Engler, D. R., M.F. Kaashoek.
`C and tcc: a Language and Compiler for Dynamic Code
Generation. Transactions on Programming Languages and
Systems 21:2. March 1999. 324-369.

[25] U. Schultz, J. L. Lawall, C. Consel, G. Muller. Towards
Automatic Specialization of Java Programs. Lecture Notes in
Computer Science 1628. Springer. 1999.

[26] C. Simonyi. The death of computer languages, the birth of
Intentional Programming. Microsoft Research Tech. Rpt.
MSR-TR-95-52. 1995.

[27] B. Stroustrup. Separate compilation must stay! AT&T
Tech. Rpt. 1996.

[28] Sun Microsystems Incorporated. The Java hotspot
performance engine architecture: A white paper about Sun's
second generation performance technology. Technical report.
April 1999.

[29] C. Szyperski. Component Software. ACM. New York. 1997.

[30] W. Taha, T. Sheard. Multi-stage programming with explicit
annotations. In Proc. ACM SIGPLAN Symp. on Partial
Evaluation and Semantics-Based Program Manipulation
(PEPM). ACM SIGPLAN Notices 32: 12. New York. June
12-13, 1997. 203-217.

ACM SIGPLAN Notices 56 Vol. 38(12) Dec 2003

