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ABSTRACT 
Run-time code generation (RTCG) would be used routinely if 
application programmers had a facility with which they could 
easily create their own run-time code generators, because it would 
offer benefits both in terms of the efficiency of the code that 
programmers would produce and the ease of producing it.  Such a 
facility would necessarily have the following properties:  it would 
not require that programmers know assembly language;  
programmers would have full control over the generated code;  
the code generator would operate entirely at the binary level.  In 
this paper, we offer arguments and examples supporting these 
assertions.  We briefly describe Jumbo, a system we have built for 
producing run-time code generators for Java..   

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – code generation. 

General Terms 
Languages. 

Keywords 
Run-time code generation;  Java. 

1. INTRODUCTION 
A code generator is a program that produces other programs.  
Almost all code generators fall into one of two categories: 

• Binary-level, run-time (or load-time) code generators.  
The best-known examples are the just-in-time compilers 
for languages like Java, C#, and Self [10,28].  These 
programs are in everyday use, but they are few in 
number.  They are written by “systems programmers”  
possessing a deep knowledge of machine-level 
programming, rather than application programmers.  

• Source-level, compile-time code generators.  The best-
known examples here are parser- and lexer-generators.  
But simple, ad hoc compile-time code generators are 
very common –  far more than run-time code generators 
– because they can be written by a programmer knowing 

only the standard programming language.  The scripts 
employed in source distribution of programs that modify the 
program source by, for example, inserting the correct local 
path names for libraries, are common examples.  Templates 
and macros are also, in effect, simple program generators.  
Taking all forms of compile-time code generation together, it 
is a very common technique. 

The argument of this paper can be summarized concisely:  if the 
benefits of these two classes of code generators could be realized 
in a single system, the combination would be much more powerful 
than the sum of the two classes separately.   The widespread 
employment of run-time code generators is constrained by the 
difficulties of writing them;  the employment of compile-time 
code generators is constrained by the fact that they can be 
employed only where a compatible compilation environment is 
known to exist.   A system which could be used by ordinary 
programmers to create run-time code generators would open up 
many possibilities.  This is what we call routine run-time code 
generation. 
We are further advocating that run-time code generators can be 
obtained by changing what is meant by “object code”: instead of  
“executable machine language,” we prefer the definition 
“executable program generator.”   That is, we are suggesting that, 
as a routine matter, programs might be delivered in the form of 
code generators. More generally, components might be delivered 
in the form of parameterized code generators.  Taking a page from 
functional programming, we need merely extend this notion to 
allow for code generators parameterized by other code generators 
(themselves possibly parameterized by yet other code generators), 
and the result is a completely general, yet completely binary, 
RTCG facility.  In other words, with traditional object files as the 
primitive types, run-time code generators of great variety can 
result from employing the full domain of higher-order values.   
In summary, we propose that RTCG can and should be a routine 
tool used by application programmers.  We are mainly concerned 
in this paper with arguing for the “should” part of that 
proposition.  But the argument would be idle if we had no idea 
about the “can” part.  Accordingly, we will briefly describe 
Jumbo, the system we have built for the creation of run-time code 
generators in Java. 
The paper is organized as follows:  We begin by discussing what 
we consider to be the most essential properties of a system to 
support routine RTCG, why routine RTCG is desirable, and how 
existing approaches succeed or fail in exhibiting the properties we 
have listed.  The heart of the paper is sections 5-10, in which we 
discuss the potential applications of such a system.  (Section 10, 
on using RTCG to provide higher-level programming facilities, is 
much the longest of these sections.)  We follow this by describing 
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our approach to creating such a system, and give a brief 
description of the Jumbo system for creating run-time code 
generators in Java.  A conclusions section completes the paper. 

2. PROPERTIES OF A ROUTINE RTCG 
SYSTEM 
Manifestly, run-time code generation is not routine.  This despite 
the fact that its benefits have been touted for many years.  We 
believe this is because the process of creating run-time code 
generators has never been properly supported in existing 
languages – or, more precisely, in existing compiled languages.  
Here, we discuss some key properties we believe a system to 
support creation of run-time code generators should possess.  In 
section 4, we will review some of the prior art in this area, to see 
where existing systems succeed or fail along these lines. 
In our view, then, a system to allow for routine run-time code 
generation would have these properties: 
Programmer control:  The programmer should be able to say 
exactly what program is to be created.  Some restrictions to 
enforce safety or efficiency requirements may be necessary, but 
they should be minimized.  (Actually, we would go further:  We 
believe that in the current state of our knowledge of how RTCG 
might be used, it would be premature to place any restrictions on 
programmers’ uses of it.  But we acknowledge that such 
restrictions may, at length, turn out to be useful.)   
Source-level specification:  If programmers are to be in control, 
and if the system is to find routine use, programmers must be able 
to speak to the system in source language.  Most current systems 
that perform run-time code generation – just-in-time compilers are 
the best known examples – cannot be expressed in source code;  
such code generators fall outside the scope of what we are 
advocating.  (Of course, we are not saying that those code 
generators are bad, only that they are inherently exotic and 
unlikely to be routinely created by application programmers.)  On 
the other hand, many kinds of code generation can be expressed in 
source.  These include, obviously, anything currently done by 
compile-time code generators, as well as the generators produced 
using partial evaluation-based “meta-programming” techniques.  
It also includes transformations which are, for varying reasons, 
done at the binary level [15,19], but whose semantics can be 
explained at the source level. 
Run-time code generation:  The central argument for run-time 
code generation is that it presents opportunities for optimization 
that are not available at compile time, or even at load time [16].  
We will shortly make another argument for this property from the 
notion of deployability. 
Binary-level implementation:  We mean by this that the inputs and 
outputs of the code generator should be binaries rather than 
source code.  As stated earlier, source code generation is viable 
only when the compilation environment is certain to be 
appropriate for the generated code.  Compilation environments are 
highly complex – requiring the correct version of the compiler 
and supporting libraries in the correct places on the compilation 
platform – and, more to the point, highly variable.  Run-time 
environments, while also complex, are comparatively 
standardized.  Another problem with generating source code is 
that the expense of compilation limits the range of applicability of 
the generator.  Yet another is that many companies do not like to 

distribute source code, and there is no reason to think this 
reluctance would not extend to machine-generated code;  limiting 
the commercial contribution is not a good way to encourage 
routine code generation. 
(There is an ambiguity to the term “binary.”  Even traditional 
object files do not actually contain executable code – some 
translation is done in the linking process.  In principle, one might 
argue that AST’s are binaries, but just have a more complex 
translation process; [18] says essentially this.  Indeed, one could 
even say the same about source code!  In this sense, being 
“binary” is a matter of degree rather than kind. In any case, the 
essential point at issue is the complexity and, above all, the 
standardization of the translation process.  Traditional binaries 
have to be standardized because the machine language is fixed by 
the hardware; virtual machine codes have to be  standardized – 
thought not quite as much – because of the difficulty of 
distributing new virtual machines to all clients.  ASTs and source 
programs could, in principle, be perfectly standardized;  in 
practice, this is unlikely ever to happen.) 
The last two properties are related to deployability, a notion that is 
considered critical in the software components community [29].  
Indeed, deployability – broadly speaking, the ability to obtain and 
employ a software artifact easily – is generally considered part of 
the very definition of the term “software component.”  Examples 
include applets, COM components, and traditional subroutine and 
class libraries.  It is also generally agreed that the intervention of a 
compiler when employing a piece of software renders that 
software inherently non-deployable. (In their survey [21], Luer 
and van der Hoek  write, “the component must be prepackaged, 
which typically means that it is distributed in binary form rather 
than source code. Pre-packaging has the benefit that it avoids 
having to rely on a user to configure and compile source code, 
which, to date, remains an error-prone process that typically 
requires significant technical skills.”)  Thus, our insistence on 
binary-level operation is, in part, because we want code 
generators to be as deployable as other software components.  
Deployability is also enhanced when a component can be loaded 
dynamically (like applets and COM components).  This provides 
another argument for insisting on run-time code generation:  there 
would be no point in providing a code generator that could be 
loaded at run time if it could not be used at run time. 
If a mechanism having these properties were available for 
mainstream, compiled languages, it would open up numerous 
opportunities for producing more adaptable – and therefore more 
useful – programs. Consider the example of Lisp.  Lisp 
implementations are typically interpretive, which means that, 
broadly speaking, the compilation and execution environments are 
the same, eliminating the distinction between compile-time and 
run-time.  A compile-time code generation facility is a run-time 
code generation facility;  since programs are retained in source 
(that is, S-expression) form, a source-based code generation 
system is a “binary”-based system.  Thus, Lisp should be a good 
test case for our claims.  And, indeed, program generation has 
long been a standard tool in the Lisp programmer’s toolkit.   (Paul 
Graham [8] gives a lively and forceful discussion on this point.)  
Consider the example of encapsulated data types.  Early versions 
of Lisp – like other languages of its era – did not have a built-in 
encapsulated data type facility.  In the 1970’s, a great variety of 
such facilities were introduced into Lisp.  This was done by using 
the macro facility.  Eventually, these features became “official.”  
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Without the experimentation made possible by the macro facility, 
these might have taken a very different form and taken much 
longer to develop. 

3. WHY SHOULD RTCG BE ROUTINE? 
In the following sections, we will describe some of the ways in 
which routine run-time code generation might help solve 
computing problems.  Again, we emphasize that the point here is 
not to encourage the occasional use of RTCG for specialized 
purposes;  neither are we advocating any particular run-time code 
generator or area of potential application of RTCG.  Rather, we 
want to give the ordinary application programmer the power to 
create run-time code generators. 
Here, we state briefly some benefits that can result from supplying 
the programmer with this tool.  Our list is merely a suggestion of 
what might be possible.  In the heart of this paper – sections 6-10 
– we elaborate on this list.  However, as with any other 
programming facility, we would anticipate – and this is really the 
heart of the argument we are offering – that, given the power, 
programmers will make deeper and more imaginative uses of it 
than we can possibly anticipate. 
Run-time efficiency for first-order programs:  It is well known 
that many computations can be sped up by preprocessing some of 
the data (the static, or relatively static, data) before consuming the 
remainder of the data (the dynamic part). 
Run-time efficiency for higher-order programs:  Highly modular 
programs lose efficiency by virtue of the boundaries between 
components.  The entire program is known by run-time, if not 
load-time.  The case is similar to the first-order case except that 
the static data consists of the late-bound components with respect 
to which the program is, in effect, parameterized.  
Code compaction:  One benefit of generating code at run-time is 
that some parts of the code may become unnecessary, and other 
parts may be subject to substantial simplification.  This can be 
particularly important when the target platform is resource-
limited. 
Code adaptation:  Much has been said recently about the need for 
software to be highly adaptable in the coming world of ubiquitous 
embedded devices.  The scenario often invoked is when an ad hoc 
community of small devices receives a new “visitor” who speaks a 
language never before heard.  Assuming there is some primitive 
ground on which communication can begin, the devices must 
learn to adapt to this new interlocutor:  they must determine what 
it wants, what it can offer, and how to cooperate to achieve the 
overall goals of the community.  In more vulgar terms, they must 
all exchange drivers and adapt them for efficient communication. 
Programming language expressiveness: A constant theme – one 
might even say the constant theme – of programming language 
and software engineering research is “raising the level” at which 
programmers express their solutions;  another way of saying this 
is that the programmer should be able to express her design, not 
just its implementation.  Each language attempts to do this, within 
its own domain and under its unique constraints.  Beyond the 
development of a new language, one method of “raising the level” 
is to use macros.  Another method is to embed a domain-specific 
language, admitting, within its scope, more concise expression or 
more efficient execution or both.  Broader efforts with the same 
goals include various component methodologies [21], aspect-

oriented programming [17], and intentional programming [26], all 
of which can be regarded –  to a first order of approximation –  as 
code generation systems. If these methods could be employed at 
the binary level, it would make them more portable and more 
deployable, and accordingly more routine.   
In none of these areas does RTCG provide a “turn-key” solution.  
The difficult problems in adaptive computing, efficient 
component interaction, and so on, are deeper than any 
implementation technique can solve.  But RTCG can be an 
enabling technology:  it can permit programmers to create ad hoc 
solutions to these problems without incurring large infrastructure 
costs or overcoming a large learning curve. 

4. RELATED WORK 
Code generation is not a new concept, nor is the idea of creating 
tools to facilitate it.  Our contribution is in emphasizing the 
importance of combining full programmer control, source-level  
specification, binary-level operation, and run-time code 
generation.  Existing systems – with a few exceptions – fail to 
realize this combination.  Of course, they have other properties 
that we have not emphasized, such as high efficiency, ease of 
programming, or static analyzability.  Still, we would claim that 
missing any of the four properties we require precludes routine 
usage. 
The biggest category of related systems is those based on partial 
evaluation [5].  In these systems, program inputs are classified as 
static or dynamic.  When the static data arrive, a program is 
generated that is expected to process the dynamic data more 
efficiently than the original program would have done.  Partial 
evaluation has some decided advantages over other approaches.  
In particular, it is easier to use because the programmer only 
writes a single program;  the division between program generator 
and generated program (the “staging” of the computation) is 
automatic.  However, it fails to have all the properties we have 
enumerated.  Although most partial evaluation-based systems 
have some form of programmer annotation to allow for greater 
control of the staging, the degree of programmer control is 
inadequate (see section 6 for an example).  Indeed, the approach 
is inherently limited, in this way:  the generated program cannot 
contain anything that was not, in some sense, already contained in 
the generating program.  For example, in typed languages [30], 
the generated code cannot contain new type declarations;  since 
the original program, prior to staging, must have been complete 
and type-correct, it is impossible for new types to have a place in 
the generated code.  However, the generation of types is 
frequently part of the program generation process;  we view this 
as failing to give the programmer sufficient power over the 
generated code.  Furthermore, these systems seem to be inherently 
compile-time, or, at best, load-time.  (Hence, data are “static” and 
“dynamic” rather than, say, “earlier” and “later.”)  In particular, 
there is no facility in any of these systems, as far as we know, for 
generating code more than once during execution. 
`C [6,24] comes close to possessing all four properties.  For 
example, new functions can be created and compiled at any time 
during execution.  However, like partial evaluation systems, `C 
does not permit the dynamic construction of new types.  Also, for 
efficiency reasons, some restrictions are placed on the kinds of 
code that can be filled into holes, again limiting the programmer’s 
freedom. 
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DynJava [22] is a system that resembles Jumbo, the system we 
have built to implement our ideas (see section 12).  It is not our 
purpose here to give a technical comparison of these two systems.  
However, DynJava does have static type-checking and, as we have 
noted above, this restricts the types of code programmers can 
generate. 
Intentional programming (IP) [26] has similar goals to ours:  to 
create highly adaptable programs.  It does this by representing 
programs as trees and giving programmers the opportunity to 
create tree transformers easily, thereby creating new language 
features.  IP, however, operates at the level of abstract syntax 
trees, so is not binary-level.  For the reasons given earlier, we 
believe this creates a significant barrier to widespread adoption. 

5. SPECIFYING PROGRAM 
GENERATORS 
Throughout the paper, we will use Java as the language in which 
to give examples.  We propose to use a very simple method of 
constructing code generators:  specify programs as strings.  In 
other words, we will treat Java as if it were an interpreted 
language.  As noted above, the disadvantage of this approach is 
that it is strictly compile-time – that is, it can be used only on 
systems known to have the correct compilation environment.  For 
now, we are not concerned with how to create a mechanism that 
has all four properties we require;  the first two properties suffice 
for what we want to illustrate. 
We would, however, like to make a small notational change to 
Java strings to make them better applicable to our purposes.  First, 
we will augment the normal double-quote notation for string 
constants with a “bracketing” notation:  instead of  “I’m a 
string” ,  we will write $<I’m a string>$.  We will also 
employ an “anti-quotation” mechanism, as follows:  Within a 
quoted string, the notation `(expression) will be used to 
indicate that the result of evaluating expression will be a 
string that is to be spliced into the middle of the containing string.  
In short, in this extension of Java: 

$< … `(---) … >$  ≡≡≡≡  “…” + (---) + “…” 

The inner expression (---) is an arbitrary string-valued 
expression.  In particular, it may contain strings as 
subexpressions, and these may use the new notation and may, in 
turn, contain anti-quoted parts.  When the anti-quoted expression 
is a single identifier, we will omit the parentheses.  We should add 
that, in contrast with the double-quote syntax, our brackets allow 
embedded line breaks. 
The idea of quote/anti-quote is of considerable antiquity [1].  The 
specific notation used here is similar to that used in MetaML [30].  
However, there is a significant difference in its use in, say, Lisp, 
and its use in MetaML.  In Lisp, it is a mere abbreviation.  The 
strings (actually, S-expressions) created using anti-quotation are 
just strings, subject to all the string operations provided by the 
language.  In MetaML, the values inside the anti-quotation 
brackets are not strings at all, but values of type “code.”  These 
values have none of the string operations, just an implicit 
“compile” operation applied at some point later in the 
computation.  There is a bright line between these two notions of 
quotation.  For reasons to be given later (see section 11), we wish 
to state clearly on which side of this line we stand.  We will never 
perform ordinary string operations on strings constructed using 

our quotation syntax.  Aside from using them to construct more 
strings, the only thing we will do with them is to (implicitly) 
apply a compile operation.  We give a number of examples in this 
paper, the primary purpose of which is to show that a wide variety 
of code generators can be written under this constraint. 
There are no other restrictions on what code fragments can be 
created.  In particular, variable capture is possible.  Enforcing 
“hygienic” uses of variables is a feature – like type-checking – 
that arguably makes the use of program generation safer, but we 
repeat our claim that, in the current state of our knowledge, such 
restrictions are premature.  Both the creation of new types and the 
capture of free variables occur naturally in program generation, 
and we have seen no compelling evidence that the safety gained 
by imposing restrictions is worth the power lost.  (Concerning 
variable hygiene, Graham [7] says “[hygienic macros] are a 
classic example of the dangers of deciding what programmers are 
allowed to want.”  Of course, not everyone agrees.) 

6. EFFICIENCY IN FIRST-ORDER 
PROGRAMS 
The simplest applications of RTCG exploit static, or relatively 
static, data for efficiency [16].  Examples include propagation of 
run-time constants, loop unrolling, sparse array calculations, and  
recursion unfolding.   
Although this idea has been advocated for many years, it is still 
only rarely used in practice.   We believe the reason for this is that 
programmers have not been provided with a facility having the 
properties listed earlier.  Above all, the available methods do not 
allow adequate programmer control.  Absent programmer input, it 
is extremely difficult for a compiler or run-time system to know 
when, where, and how RTCG will be useful. 
Consider the problem of unrolling a loop.  Efficiency may be 
gained in this process both by eliminating the loop control 
overhead and by presenting a longer straight-line code sequence 
to the processor, allowing for better pipeline utilization.  Although 
some optimizing compilers will do this for some loops, it is, by 
and large, impossible to do at compile time, as the iteration count 
for the loop is rarely known that early.  Thus, a run-time code 
generation facility is essential.  In fact, the iteration count of a 
particular loop need not be constant, but might change slowly 
enough that code can be generated for the loop each time the 
count changes.  Since the rate of change of this iteration count is 
normally a function of the expected use of the program rather than 
any intrinsic properties of the program, it is impossible to have the 
unrolling done automatically.  At the very least, we need a facility 
whereby the programmer can indicate exactly when to generate 
new, unrolled code for the loop.  But now another problem 
intrudes:  the unrolling process itself may be more subtle than 
simply repeating the loop body multiple times.  For instance, it 
may be necessary to unroll the loop only partially, to avoid 
creating an overly long code sequence.  The optimal unrolling 
may depend upon numerous factors, and it is unrealistic to expect 
the system to discover it automatically.  Indeed, it may be difficult 
for the programmer to determine it as well, but with sufficient 
control over the outcome, the programmer is at least empowered 
to experiment with different arrangements.  There is no reason to 
think that the efficiency issues arising in this context are so much 
more complex than those arising in ordinary programming that 
programmers should not even be allowed to deal with them.  
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No method in current use allows for sufficient programmer 
control to handle the various forms of loop unrolling in any easy-
to-use package.  Keppel et al. [16] allowed for complete 
programmer control but required that the dynamically generated 
parts of the program be written in machine language (or an 
abstract intermediate language), rather than in source.  Lee and 
Leone [20] provide minimal control over the loop unrolling 
process.  They do not offer a solution to the problem of over-
unrolling.  Partial evaluation systems generally provide little 
control over the ultimate form of the generated code.  Some 
partial evaluation-based systems offer enough programmer control 
to solve the problem of when to unroll a loop [9,25], but we know 
of none where the user can direct the unrolling process to the 
extent of allowing for partial unrolling. 
On the other hand, we would claim that the problem is not 
inherently that difficult.  Imagine that a programmer has available 
the kind of simple, compile-time code generation facility we have 
described above.  (Most of the code shown here is from [14].)  In 
the simplest version of the problem, the programmer has a piece 
of code S that is to be repeated, say, 100 times.  Let us stipulate 
that the code is in a critical spot, that loop control is a large 
fraction of the execution time, and that over-unrolling is not an 
issue;  in other words, let us assume that completely unrolling the 
loop would be beneficial.  Repeating the code 100 times – that is, 
manual unrolling – has obvious disadvantages from a software 
engineering perspective. 
In a class Unroll, the programmer might define a method 
unroll(String, int), where the first argument is the loop 
body and the second the number of repetitions: 
  static String unroll (String s, int n) { 
    if (n==0) return $< >$ ; 

else return $< `s `(unroll(s, n-1)) >$ ; 
  } 
 
For example, the expression Unroll.unroll($< 
System.out.println(10); >$, 3) yields 
  System.out.println(10); 
  System.out.println(10); 
  System.out.println(10); 
 
Of course, the body of a loop normally makes some reference to 
the index variable in the loop.  The simplest method is to have the 
user supply the name of the index variable and have the unroller 
set it correctly for each iteration (note that the inner call to 
unroll refers to the previous version):  
  static String unroll (String s, String i, int n) 
  { return $< `i = 0; 
              `(unroll($< `s `i++; >$, n)) >$; 
  } 
 
Then, Unroll.unroll($< System.out.println(v); >$, 
$< v >$, 3) would produce 
  v = 0; 
  System.out.println(v); v++; 
  System.out.println(v); v++; 
  System.out.println(v); v++; 
 
However, for reasons that will become clear in our next example, 
we prefer a different solution.  In this approach, the client of the 
unroller supplies the loop body in the form of a function that, 

given a loop index, creates the loop body.  Thus, the client 
supplies a function object implementing the interface 
  interface Stmtfun { 
    public String iter (String i) ; 
  } 
 
The unroller can now create an index variable to supply to the 
loop body, but we prefer to have the client supply it himself, just 
to avoid the logical complexities of using name generation 
(although it is certainly possible, and sometimes necessary, to use 
it).  The new unroller is 
  static String unroll 
            (Stmtfun F, String i, int n) { 
    if (n==0) 
    return $<`i = 0;>$ ; 
    else return $< `(unroll(F, i, n-1)) 
                   `(F.iter(i)) 
                   `i++; >$ ; 
  } 
 
We get the effect of the previous call by defining 
  Stmtfun F = new Stmtfun () { 
      public String iter (String indx) { 
        return $< System.out.println(`indx); >$ ; 
      } 
    }; 
 
and then calling Unroll.unroll(F, $<v>$, 5). 
These are, of course, simple examples of unrolling, and within the 
capabilities of numerous existing technologies (most obviously, 
partial evaluation).  However, it is well known that, especially for 
large loops, unrolling may actually result in slower execution;  the 
savings in loop control are overshadowed by the cost of loading 
the larger code and by the pressure it places on the instruction 
cache.  Thus, the programmer may decide that efficiency is to be 
gained by partially unrolling the loop.  The partial unroller creates 
a loop the body of which contains several copies of the original 
loop body in sequence.  The number of copies is referred to as the 
block size.  The loop repeats this sequence often enough to make 
up the total number of required iterations.  If the block size does 
not divide the iteration count evenly, some extra copies of the 
body are added at the end.  One final detail is that there is no 
point in including the “outer” loop if its iteration count would be 
less than two.  
Here is our version of the partial unroller:  
  public static String unroll_part ( 
      String i, String init, int incr, 
      int iterations, Stmtfun F, int BlockSize) { 
    int loops = iterations/BlockSize, 
        leftover = iterations%BlockSize; 
    if (loops < 2) 
      return unroll(i, init, incr, iterations, F); 
    else 
      return 
    $< for (`i = `init; 
            `i < `init+(loops*BlockSize*incr);) { 
         `(unroll(i, i, incr, BlockSize, F)) 
       } 
       `(unroll(i, i, incr, leftover, F)) 
    >$ ; 
  } 
 
Note that in this form of unrolling it is not possible to know the 
exact initial value of the inner loop’s index variable, since that 
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value changes at each iteration.  Thus, the partial unroller uses a 
more complicated version of the full unroller: 
  public static String unroll ( 
      String i, String init, int incr, 
       int iterations, Stmtfun F) { 
    String C = $< >$ ; 
    for (int x=0; x<iterations; x++) 
      C = $< C 
             F.iter(`init+(x*incr)) >$ ; 
    C = $< C 
           `i = `init+(iterations*incr); >$ ; 
    return C; 
  } 
 
Note, by the way, that in this case the function object F is not 
applied simply to an iteration variable, but rather to an expression 
whose value is equal to the value the iteration variable would have 
had in the normal loop.  (This assumes, of course, that there is no 
assignment to the iteration variable within the loop.)  This is why 
we made the decision earlier on that the loop body should be a 
function. 
To complete this example, the call  
Unroll.unroll_part($<i>$, $<0>$, 1, 500, F, 6); 
yields 
  for (i=0; i<0+498;) { 
    System.out.println(i+0); 
    System.out.println(i+1); 
    System.out.println(i+2); 
    System.out.println(i+3); 
    System.out.println(i+4); 
    System.out.println(i+5); 
    i = i+6; 
  } 
  System.out.println(i+0); 
  System.out.println(i+1); 
  i = i+2; 
 
One can argue about whether this type of coding is overly 
complex or error-prone;  it does not seem to us to exceed some 
threshold that is never approached in ordinary programming. 
One can also argue about whether a truly general-purpose loop 
unroller can ever be constructed.  In fact, we would say that it is 
unlikely.  But that is all the more reason why the program 
generation capability should be put in the hands of ordinary 
programmers, so that they can deal with the complications (and 
simplifications) that arise in their particular application. 

7. EFFICIENCY IN HIGHER-ORDER 
PROGRAMS 
Higher-level abstractions usually introduce some run-time cost.  
Implementing the abstraction – that is, maintaining the illusion for 
the application programmer that the underlying system has 
properties that it does not, at its most primitive level, have – has 
an associated run-time cost.  Since these abstractions are built on 
top of yet other abstractions, the inefficiencies multiply.  In most 
cases, this is not a critical problem, but its hidden effect is to limit 
the kinds of abstractions that the system designer considers 
building and the programmer considers using.  There are 
numerous examples: 
Module boundaries.  The effect of virtually all higher-level 
module systems is, in part, to increase the number of function 
calls made by the running system.  The clearest example is class 

libraries, where even access to a field in an object requires a 
function call.  Programmers and language designers engage in 
numerous machinations – often violating information-hiding 
principles – to eliminate this cost. 
System layer boundaries.  These are a notorious source of 
inefficiency in operating systems and middleware [CHL+98].  
Programmers cope by, in effect, ignoring the system layer 
structure when possible;  for example, efficient network protocol 
implementations integrate functions across layers [3] rather than 
following the layers as designed. 
Virtual machines.  This is one abstraction for which RTCG is in 
routine use, under the name “just-in-time compilation” [10,28]. 
Higher-order functions.  Functional programming languages have 
often led the way in providing abstractions for programmers; the 
higher-order function is the typical abstraction here.  Other 
languages have adopted the concept of higher-order functions; 
examples are the increasingly common use of function objects and 
callbacks in object-oriented languages, and such features as 
iterators (which provide a kind of “map” operation in imperative 
languages).  Again, increased function calling imposes an 
efficiency penalty. 
Polymorphic functions.  This is another example of a useful 
abstraction in higher-order languages.  It reduces the 
programmer’s burden by allowing a single copy of a function or 
class to be used in differing circumstances.  In most languages, it 
is implemented by “boxing” all values, imposing an otherwise 
unnecessary cost on computations that involve primitive values. 
Memory management.  A crucial implementation technology 
pioneered in higher-level languages (such as Lisp), automatic 
memory management has now reached the mainstream.  It comes 
with a high run-time cost, which extensive research has 
significantly reduced but not eliminated.   
For most of these cases, the principal cost of the abstraction is in 
the form of extra function calls.  For virtual machines, the 
problem is sufficiently constrained that significant benefits are 
obtained from automatic RTCG.  However, that does not always 
work.  For example, consider polymorphic collections – that is, 
collections of Object instances – in Java.  These entail what 
may be a substantial cost in casting (boxing and unboxing) 
primitive values.1  The run-time system cannot know that a certain 
collection is bound to contain, say, integers for its entire life, so it 
cannot optimize that collection.  The programmer’s only recourse 
is to write his own, monomorphic, collection class. 
In C++ this cost is avoided by using templates, a compile-time 
mechanism.  Here we show how to accomplish the same effect 
using strings (see also [14]).  Note that in generating a new 
collection type in Java, one must create two classes:  the 
collection class itself and a class of iterators for that class.  Here 
we present a generator for monomorphic vectors.  The method 
String makeVectorName (String) produces the name of 
the new vector class, and String makeIteratorName 
(String) produces the name of the iterator class for that new 
vector class. 
    String vname = makeVectorName(type); 

                                                                 
1 Parametric polymorphism eliminates the explicit casts, but not 

the boxing and unboxing. 
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  String itname = makeIteratorName(type); 
 

  String vectorClassDefs = 
     $<public class `vname { // vector class 

 `elttype[] elements; 
 int numelements; 
 
 public `vname() { // constructor 
   elements = new `elttype[10]; 
 } 
 
 public void add(`elttype o) { ... } 
   ... 

      } 
 
      public class `itname { // iterator class 
          ... 
      } 
    >$; 
 
Some additional, but routine, code is needed to insure that no 
particular instance of this generic code is generated more than 
once.   This is contained in the method String newVector 
(String);  the latter returns the code needed to create a vector 
of the given type.  Use of this generator is not much different from 
the use of templates in C++;  this code is assumed to appear 
within a larger quoted fragment: 
 
  `(vector($<int>$)) v = `(newVector($<int>$)); 
 
  for (int i = 0; i < vlen; i++) v.add(i); 
 
  int sum1 = 0; 
  for (`(iterator($<int>$)) i = 
             v.iterator(); i.hasNext(); ) { 
     sum1 += i.next(); 
  } 
 
This provides no obvious advantages over templates (aside from 
the fact that Java does not have templates).  We believe it would 
be advantageous if the collection-generating code could be 
provided in binary and could generate binaries.  It would make the 
facility both simpler and less expensive to use –  as simple and 
inexpensive as using the current APIs.2  

8. CODE COMPACTION 
As computers become ubiquitous, an old concern is reasserting 
itself:  code size.  Anticipated memory sizes, for all but the tiniest 
devices, are much larger than the memories into which the 
original “hero programmers” squeezed their code.  Nonetheless, 
relative to the kind of functionality they are expected to support, 
these new devices are very small.  There are still hero 
programmers, of course, but they are in short supply.  The 

                                                                 
2 Frankly, it is not clear to us why a preprocessor is needed in 

languages like C and C++ at all.  The facility used here is nearly 
as convenient and much more powerful.  We suspect the 
perceived need arises from the lack of a standardized, easy-to-
use string facility in those languages.  The Java designers 
evidently felt that a preprocessor was simply unnecessary, and 
so provided neither it nor a quotation facility like ours.  The 
inclusion of a preprocessor in C#, where a standard string type 
exists, is a mystery. 

question is how to make programming small devices much more 
convenient.  Ideally, code to run in embedded devices should be, 
to the greatest extent possible, obtained directly from a single 
code base that covers larger devices as well.  (Here, we are laying 
aside real-time issues that are common in embedded devices and 
considering only the effect of miniaturization.) 
Consider just one example: the problem of “feature loading.”  
Programs often have a multiplicity of features from which a client 
can choose; the choice depends upon the client’s needs and 
budget.  The result of allowing this choice is that the programmer 
must be capable of producing, easily, any one of countless 
configurations of a single program. Many companies do just this, 
often with the help of sophisticated compile time tools written in-
house.   But what if the company wanted to distribute the entire 
program as an adaptable component?  With current technologies, 
they could distribute the largest, most full-featured, version of the 
program, with versions for every platform (a really fat binary), or 
they could distribute the code itself, along with the entire 
compilation environment.  Either option has obvious and severe 
disadvantages.  Using RTCG, they would be able to distribute 
code capable of producing the right version of the program for 
any client.  

9. ADAPTIVE PROGRAMS 
Many writers have predicted a future in which numerous devices 
cooperate to serve humans.  These devices are of varying size, 
levels of intelligence, reliability, and mobility; moreover, they 
may or may not be familiar with, or even trusted by, one another;  
yet they must cooperate.  This is the general aspect of those 
scenarios that fall under the heading of ubiquitous computing. 
All the ways in which RTCG might be used come into play when 
considering programs that need to survive in a dynamic 
environment with constantly changing interlocutors.  Adaptive 
software is software that can respond gracefully to dramatic 
changes in the computational environment.  All software is 
adaptive to some extent;  the difference is the kind and quantity of 
environmental changes the software can handle, and the resource 
constraints under which the software labors.   
A simple version of adaptation is adjustment to the target 
architecture and operating system, which is frequently 
accomplished in C/C++ programs using long sequences of 
“ifdef’s.”  Obviously, this could be accomplished using 
quote/anti-quote syntax just as easily: 
  $< class GenericCode { 
       ... 
       ... `((current_os == “Linux”) 
            ? $<Linux  code>$ 
            : (current_os == “Windows XP”) 
            ? $<Windows XP code>$ 
            :  ... 
            : $< … default or error code … >$ ... 
 ... 
    } >$ 
 
Equally obviously, this method is much more powerful than 
“ifdefs” in that the code associated with any particular 
configuration can be obtained by any means available in the 
language, including calculating it from a variety of static 
parameters, or obtaining it from a website.  It also provides the 
opportunity to give more structure to these configuration 
calculations by, for example, creating classes corresponding to 
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each platform.  We might end up with something more concise 
and more extensible: 
  interface MachineType { 
    String getPlatformSpecificCode () ; 
    String getOtherPlatformSpecificCode () ; 
 ... 
  } 
 
  MachineType currentPlatform =  
                       getCurrentPlatform(); 
 
  $< class GenericCode { 
       ... 
       ... `(currentPlatform. 
                 getPlaftormSpecificCode()) ... 
       ... 
     } >$ 
 

10. LANGUAGE EXPRESSIVENESS 
RTCG is usually regarded as a low-level implementation 
technique.  It is transparent to the programmer in the sense that it 
does not alter the programming language.  We believe that this 
view of RTCG is far too strained.  Indeed, we believe that the 
potential to provide high-level abstractions not previously 
available to programmers is the most exciting – as well as the least 
explored – area of application of RTCG. 
Our evidence for this contention comes from experience with 
other systems.  Consider the use of macros, which are a (more or 
less general, depending upon the language) form of compile-time 
program generator.  Macros serve both to improve efficiency and 
increase expressiveness of the underlying language.  The latter 
advantage has been realized most notably in Lisp systems, where 
macros have been used extensively for years.  The template 
facility in C++ has also been used widely to raise the level of 
abstraction of programming, while at the same time – and this 
point has been emphasized by Bjarne Stroustrup frequently in 
public comments – offering the efficiency of non-generic code. 
Facilities that increase programming ease are – by definition, one 
might say – static facilities.  That is, they are known to the 
programmer and employed at compile time.  Why then would we 
be interested in RTCG in this context?  We return to the notion of 
deployability.  We can make an analogy with ordinary procedures.  
They are present at compile-time, it is true, but not as source code.  
If they did have to be available as source code, this would 
severely constrain their use.  (C++ templates offer an example 
[27].)  Thus, even if we allow that the use of these features is 
inherently compile-time, we would still claim that having them in 
binary rather than source form would make a great difference:  
they would be easier to deploy and less subject to piracy, and 
therefore more likely to be widely developed and distributed.  
We offer two examples: an implementation of the programming 
idiom of “state machines” and an implementation of a domain-
specific language.  
Programming idioms.  In functional and object-oriented 
languages, idioms like “divide and conquer” can be programmed 
directly.  But there is a cost in efficiency.  As normally conceived, 
such idioms represent a way to write programs.  From this point 
of view, the ability to express the general idea of the idiom is only 
a partial solution.  Using run-time code generation, the precise 

program implied by the idiom can be expressed;  this is a direct 
implementation of the idiom. 
An example is the implementation of state machines.  The ability 
to express the state transitions and actions – say, as function 
objects – is quite different from the ability to produce a program 
in which, following the standard idiom, states are program labels 
and actions are statements.  The efficiency with which the idiom 
can be realized is one of its central attractions. 
We present part of a simple implementation of finite-state 
machines.  In this implementation, a finite-state machine consists 
of an array of states (numbered from zero), each containing an 
array of transitions;  each transition consists of a predicate to test 
whether that transition should be taken, an integer giving the 
target state of that transition, and an action to be taken when that 
transition occurs.  Predicates and actions are pieces of 
parameterized code;  specifically, a predicate is a function from a 
string (an expression denoting the input character) to a string (the 
condition to be tested), and an action is a function from an integer 
(the target state) and a string (the input character) to a statement.  
Rendering all of this into Java is a bit cumbersome: 
  interface Predicate { 
    String pred (String inputcharvar); 
  } 
 
  interface Action { 
    String action (int nextstate, 
                   String inputcharvar); 
  } 
 
  public class Transition { 
    Predicate pred; 
    int nextstate; 
    Action act; 
 
    Transition (Predicate p, int s, Action a) { 
      pred = p;  nextstate = s; act = a; 
    } 
  } 
 
  public class State { 
    Transition[] transfun; 
 
    State (Transition[] tf) { transfun = tf; } 
  } 

 
  public class FSM { 
    String FSMclassname; 
    State[] theFSM; 
 
    FSM (String c, State[] M) { 
      FSMclassname = c;  theFSM = M; 
    } 
 
    String genFSMCode () { ... } 
  } 
 
We have omitted the definition of genFSMCode(), the code-
generating function itself, to save space, but we will show an 
example of its output shortly. 
 
With these definitions, we can define this finite-state machine: 
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with this code (mkLetterPred and mkAlphanumPred generate 
the expressions to test for letters and alphanumeric characters, 
respectively): 
  Transition[] s0 = 
    {new Transition( 
 new Predicate () { 
   public String pred (String ch) { 
     return mkLetterPred(ch); 
   } 
 }, 

1, 
 new Action () { 
   public String action(int s, String ch) { 
           return $<addToBuffer(`ch);>$ ; 
              } 
      }) 
    }; 
  State st0 = new State(s0); 
 
  Transition[] s1 = 
    {new Transition( 
       new Predicate () { 
   public String pred (String ch) { 
    return mkAlphanumPred(ch); 
   } 
       }, 
      1, 
             new Action () { 
        public String action(int s, String ch) { 
   return $<addToBuffer(`ch);>$ ; 
               } 
       }), 
     new Transition( 
       new Predicate () { 
         public String pred (String ch) { 
           return $<true>$ ; 
  } 
       }, 
      2, 
             new Action () { 
        public String action(int s, String ch) { 
          return $<emitbuffer();>$ ; 
               } 
             }) 
    }; 
  State st1 = new State(s1); 
  State[] Mstates = {st0, st1}; 
  FSM M = new FSM($<Ident>$, Mstates); 
 
Because this specification is rather cluttered, we have underlined 
the semantically meaningful parts;  the rest is pure boiler-plate 
required by Java for defining function objects and initializing 
arrays.  (In earlier work [12,13], we advocated the use of 
functional languages to define program generators for Java, and 
the results were, unsurprisingly, notationally neater.) 

When the finite-state machine M defined in the last line gets the 
message genFSMCode, it generates this code: 
  class Ident { 
    static void runFSM (InputSource in) { 
    int theState = 0; 
      while (true) { 
        if (in.empty()) return; 
        char ch = in.next(); 
        switch (theState) { 
     case 0: if (('a' <= ch && 'z' >= ch) 
                || ('A' <= ch' && Z' >= ch)) { 
               addToBuffer(ch); 
               theState = 1; 
             } 
             else ; 
             break; 
     case 1: if (('0' <= ch'9' >= ch) 
                 || ('a' <= ch'z' >= ch) 
                 || ('A' <= ch'Z' >= ch)) { 
               addToBuffer(ch); 
               theState = 1; 
             } 
             else if (true) { 
               emitbuffer(); 
               theState = 2; 
             } 
             else ; 
             break; 
     default: return; 
     } 
   } 
   return; 
  } 
 } 
 
Domain-specific languages.  DSL’s can be thought of as 
specialized compilers for a subset of a given base language.  For 
example, an array-processing language might be built on top of a 
general-purpose language by defining special data types and 
operators.  Given the understanding that only these prescribed 
features will be used, more efficient object code could be 
produced.  This efficient code cannot be produced by the regular 
compiler, because the latter is not privy to this understanding; 
therefore, a separate program generator is needed. 
We present as an example the “message specification language” 
[2,23]. This domain comes from a military application in which 
electronic message formats, described informally in terms of bit 
fields and their allowable values, are to be translated to functions 
to decode and encode such messages.  Our presentation here is 
based on an earlier code generator written in ML [11];  we refer 
the reader to that paper for a more expansive explanation.  We 
give only the generator for the “decoding” function. 
The goal of this code generator is to take descriptions like this 
one: 
 Field Name Size Range 
 Course  3 001-360 
 Separator 1 / 
 Speed  4 0000-5110 
 Separator 2 / 

Time (group) 
2 00-23 
2 00-59 

 

0 1
letter 

letter or 
number 

other 
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and turn them into code to read messages.  If the input is in a byte 
array A indexed by inptr (counting in bits) and the output is to 
go into a record called store, this should be translated to code 
like this (assuming, for simplicity, some library operations like 
outOfRange and getint):  
  if (outOfRange(getint(A[inptr/8], 3), 0, 360)) 
  { abort(); } 
  else { 
    store.course = getint(A[inptr/8], 3); 
    inptr = inptr - (inptr%8) + (8*3); 
  } 
  if (A[inptr/8]!="/”) { abort(); } 
  else { 
    inptr = inptr - (inptr%8) + (8*1); 
  } 
  if (outOfRange(getint(A[inptr/8], 4), 0, 5110)) 
  { abort(); } 
  else { 
    store.speed = getint(A[inptr/8], 4); 
    inptr = inptr - (inptr%8) + (8*4); 
  } 
  if (A[inptr/8]!="/”) { abort(); } 
  else { 
    inptr = inptr - (inptr%8) + (8*1); 
  } 
  if (outOfRange(getint(A[inptr/8], 2), 0, 23)) 
  { abort(); } 
  else { 
    store.hour = getint(A[inptr/8], 2); 
    inptr = inptr - (inptr%8) + (8*2); 
  } 
  if (outOfRange(getint(A[inptr/8], 2), 0, 59)) 
  { abort(); } 
  else { 
    store.minute = getint(A[inptr/8], 2); 
    inptr = inptr - (inptr%8) + (8*2); 
  } 
 
As in [2], we do not attempt to map directly from the tabular 
format, but instead embed operations in Java that provide a 
facsimile of the table.  In our implementation, this code is 
produced as the output of the following Java code: 
  Message course = 
    MessageOps.infield($<course>$, 
           MessageOps.asc2int(3, 0, 360)); 
  Message slash = MessageOps.delim("/"); 
  Message speed = 
    MessageOps.infield($<speed>$, 
           MessageOps.asc2int(4, 0, 5110)); 
  Message time = 
    MessageOps.seq( 
      MessageOps.infield($<hour>$, 
        MessageOps.asc2int(2, 0, 23)), 
      MessageOps.infield($<minute>$, 
        MessageOps.asc2int(2, 0, 59))); 
 
  Message fullmsg = 
    MessageOps.seq(course, 
    MessageOps.seq(slash, 
    MessageOps.seq(speed, 
    MessageOps.seq(slash, time)))); 
 
  Bitsource b = new Bitsource($<A>$, $<inptr>$); 
  Recordfield r = new Recordfield ($<store>$); 
  String msg = fullmsg.genmsg(b, r, 
                              $<abort();>$); 
 

The string msg contains the code shown above (modulo 
grooming).  We now show how to implement the operations in 
class MessageOps. 
 
The central type here is Message, which is an interface type for 
function objects: 
 
  public interface Message { 
    String genmsg (Bitsource bs, 
                   Recordfield r, 
                   String stmt); 
  } 
 
A Message is a function that takes (an expression denoting) a 
location in the bit source bs and returns code to write appropriate 
values into the record r, invoking stmt in case of an error.  
MessageOps defines a collection of static methods on messages:  
asc2int takes a certain number of bytes out of bs, makes sure 
they represent a number in ASCII that falls in the proper range, 
and puts them into r;  delim checks for a delimiter in the input 
stream and skips over it;  infield is a message transformer, 
taking a message and transforming it into a message that is nearly 
identical except that it places its results into a given subrecord of 
r;  finally, seq performs two message extractions in sequence.  
Here are their definitions (If is an auxiliary method): 
  static Message delim (final String exp) { 
    return new Message () { 
      public String genmsg(Bitsource bs, 
                Recordfield r, String stmt) { 
        return If($< `(bs.getByte()) != `exp >$, 
                  stmt, bs.advanceByte()) ; 
      } 
    }; 
  } 
 
  static Message infield (final String fname, 
                         final Message m) { 
   return new Message () { 
     public String genmsg(Bitsource bs, 
                   Recordfield r, String stmt) { 
       return m.genmsg(bs, r.subfield(fname), 
                       stmt); 
     } 
   }; 
 } 
 
 static Message asc2int (final int width, 
            final int lo, final int hi) { 
   return new Message () { 
     public String genmsg(Bitsource bs, 
                   Recordfield r, String stmt) { 
       return 
         If( $< outOfRange(getint(`(bs.getByte()), 
                           width), `lo, `hi) >$, 
                stmt, 
                $< `(r.deref()) = getint( 
                         `(bs.getByte()), width); 
                   `(bs.advanceNBytes(width)); 
                >$ ); 
     }  
   }; 
 } 
 
 static Message seq (final Message m1, 
                     final Message m2) { 
   return new Message () { 
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     public String genmsg(Bitsource bs, 
                 Recordfield r, String stmt) { 
       return $< `(m1.genmsg(bs, r, 
                            $< abort(); >$)) 
                 `(m2.genmsg(bs, r, stmt)) >$; 
       } 
    }; 
  } 
 
  static String If (String c, String t, 
                     String f) { 
    return $< if (`c) `t else `f >$; 
  } 
 
This kind of coding is familiar to functional programmers, though 
perhaps tricky for those not used to it.  We remind the reader that 
function objects are used here to provide the required operations 
without violating our rule:  strings representing programs are 
never subjected to any string operations except inclusion in larger 
strings via anti-quotation. 

11. WRITING RUN-TIME CODE 
GENERATORS 
The method we have used for giving examples in this paper can 
be used to produce run-time code generators easily.  After 
producing the desired string, one has simply to invoke the 
compiler on the execution platform and load the compiled code.  
Why, in practice, is this so rarely done? 
Programmers might blanch at the cost of invoking a compiler 
while a program is executing, and certainly this is an important 
consideration.  Still, there are many long-running programs for 
which the cost of compilation would almost certainly be paid off 
with interest.  The idea of producing such a run-time code 
generator is not so much dismissed on efficiency grounds as, by 
and large, never even considered.  In our view, the underlying 
concern is portability:  for compiled languages, the simple method 
described above requires that the target machine provide the 
appropriate compilation environment – the correct version of the 
compiler and libraries, all in the expected places.  In fact, most 
machines don’t even have compilers.3  Programmers are only 
willing to use facilities that are present on almost all machines, or, 
lacking that, are portable and simple to install.  Compilers don’t 
match either description. 
Which brings us back to a point we made at the start of this paper:  
routine code generation can be achieved by viewing “code” as a 
primitive type and employing the full range of higher-order types 
constructed from it.  We claim that the use of such higher-order 
code values is essential to realizing the promise of RTCG.  It 
permits us to make highly adaptable programs without dealing in 
source code explicitly, or invoking a compiler. 
The first remark we wish to make is an obvious one:  Code 
generators are functions, meaning that they need arguments before 
they can produce code.  Less widely appreciated is that those 
arguments may themselves be code generators, which need their 
own arguments.  If Code is the type of primitive code generators, 
a user might be asked to provide a function of type, say, int → 
Code, to the run-time code generator, which will in turn produce 

                                                                 
3 Academic computer scientists may forget this, since they rarely 

see such machines in their own work. 

some code.  The run-time code generator therefore has the type 
(int → Code) → Code.  We wish to convince the reader that this, 
and more complex, types are useful for the goal of making RTCG 
routine. 
There are two halves of the argument we need to make:  First, that 
higher-order functions arise naturally when RTCG is used for the 
kinds of applications we have listed.  We have been making this 
argument implicitly throughout the paper;  we make it more 
explicit below.  Second, and more subtly, we need to show that it 
is worthwhile – even necessary – to make the use of higher-order 
functions in this context explicit.  
For the first prong of the argument, we needn’t do more than look 
at some of our examples.  Starting with the first, and simplest, 
example – loop unrolling – we see immediately that the loop 
unroller takes a statement-returning function as one of its 
arguments;  specifically, its type (treating function objects as 
actual functions) is 

    (Code → Code) × Code × int → Code 
Indeed, every one of the examples in this paper includes higher-
order functions over Code. 
To understand the second point – why higher-order functions 
have to be used explicitly – consider the alternative:  In traditional 
macro systems like Lisp, code generation is accomplished by the 
manipulation of explicit program representations.  What might be 
regarded in the abstract as higher-order operations on code (as 
discussed above) are encoded as first-order functions over 
program representations.  For example, when constructing a loop 
body for the loop unrolling code generator, instead of using a 
function taking an identifier to a statement (that is, taking the loop 
index variable to the loop body), we could use a function String 
subst(String indexvar, String dummyvar, String 
loopbody) that  substitutes indexvar for occurrences of 
dummyvar in loopbody. 
Thus, a traditional source-level code generation system is based 
upon a concrete (source code or abstract syntax tree) 
representation of programs.  When a complete program has been 
constructed, a compiler is applied to produce executable code;  
until then, the concrete representation is open to whatever 
manipulations are permissible on such data.  Our system is also 
based on a concrete representation, but one that is restricted in the 
operations that can be performed on it:  only string concatenation 
is permitted.  To put it differently, holes can be filled in, but 
existing code fragments cannot be modified. 
The choice we are discussing, then, is nothing other than the 
choice between using an abstract, encapsulated value (a Code-
producing function) and using a particular concrete representation 
of that value (a program).  The trade-off is, in large measure, the 
familiar one:  The concrete representation is more intuitive and 
more flexible.  At the same time, it is more dangerous to use, both 
because the “invariants” can be violated and because the 
representation is likely to change over time, invalidating programs 
that depend upon it (even as its abstract meaning remains the 
same).  When the values in question are programs, additional 
concerns arise:  The concrete representation is, in effect, source 
code, so the technique cannot be used without revealing source 
code and requiring the presence of a compiler on the run-time 
platform.  Code-producing functions are a lot like concrete 
representations of code, except that they can only do one thing:  
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generate code when supplied with appropriate arguments.  This 
reduction in flexibility is just the same as what happens when a 
data representation is hidden in a class.  In this case, one benefit is 
that it allows the supplier to provide machine code (namely, the 
code for the generator that will produce the desired machine code 
for execution) rather than a concrete program representation.  
Another, more fundamental, benefit is that it allows for code-
producing functions to be optimized in ways that the concrete 
program representation cannot be.  If a particular string (or AST) 
may be altered by using destructor operations – as any string may, 
in principle, be – then it is not possible to compile it ahead of 
time.  The commitment to leave each particular string alone until 
it gets compiled allows the string to be partially compiled 
statically, thereby optimizing the final, run-time code generation 
process. 
In short, our view is that the best way to promote a routine RTCG 
facility is not to pass source code (or abstract syntax trees) among 
computers, but rather to pass parameterized code generators 
(possibly parameterized on other code generators). 
Before ending this discussion, we wish to make one point of 
technical clarification.  In the above, we have used the type Code 
as if it were synonymous with the type of machine language 
programs (or, in the Java context, virtual machine programs).  For 
the idea we are espousing to work, Code cannot be simply 
machine language.  It must be a richer type, but one from which 
machine language can be (efficiently) obtained.  Details can be 
found in the references [4,14]. 

12. JUMBO 
We have developed a compiler for Java, called Jumbo [14], which 
incorporates a quotation mechanism like the one employed in this 
paper.  The compiler works in conjunction with a run-time 
compilation API that, like any Java API, is portable and easy to 
install.  The Jumbo compiler produces code that can be run on any 
JVM system and, given the Jumbo API, can perform run-time 
code generation.  The client machine need not have a compiler 
installed; as with any Java program, the API will be loaded when 
it is first used. 
Jumbo has all four properties we have insisted upon.  As we have 
seen in the examples of this paper, the programmer has complete 
control over the construction of programs.  The programmer does 
not actually manipulate strings;  the Java type system enforces 
this, as the quoted program fragments are assigned type Code 
rather than String.  However, the specification of code 
generators, as we have seen, feels very much like manipulating 
strings;  the crucial difference is that ordinary string operations 
are not available.  (In Jumbo, quoted program fragments must be 
parsed, which raises some issues that do not come up when 
manipulating strings;  for that reason, the examples given in this 
paper will not work in Jumbo as is, but must be modified 
slightly.) 
 
Jumbo is a complete implementation of Java.  It can be used as an 
alternative to javac for ordinary Java programs (and produces 
virtually identical output), and it can be used to produce run-time 
code generators.  Aside from some restrictions imposed by the 
parser, arbitrary Java code can be enclosed in quotes for run-time 
execution. 
 

Jumbo is described in [14] and can be obtained at 
shasta.cs.uiuc.edu/Jumbo.  The Jumbo versions of the examples 
from this paper are also provided there. 

13. CONCLUSIONS 
Run-time code generation has many potential applications.  
Despite this, for compiled languages, the use of run-time code 
generation has never been popular.  If the production of run-time 
code generators were easier, clever programmers would likely 
exploit that potential and, indeed, find many applications not yet 
conceived of. 
Furthermore, the production of run-time code generators is not 
that difficult.  Generating a program and invoking a compiler at 
run-time are well within the capabilities of average programmers.  
Still, the practice has not been adopted. 
We believe that the difficulty is not technical, but, so to say, 
bureaucratic.  As long as “code” is considered to be synonymous 
with “concrete program representation,” RTCG will entail 
difficulties associated with the distribution of source code and the 
vagaries of compilers (specifically, their tendency not to exist 
when or where they are needed).  We propose a new paradigm, in 
which Code is a first-class value and run-time code generators are 
regarded as higher-order values involving Code.  No compiler is 
needed at run time, and no source code is ever created at run-time, 
much less revealed to the client. 
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