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Abstract

Distributed run-time code generation is a useful technique that can easily be implemented using the tech-

nique known as “compositional semantics.” In this dissertation, we describe a new system, Jumbo, which

adds run-time code generation features to Java. Its design allows code generators from disparate sources

to be combined dynamically. Jumbo can be used to create highly adaptable code that can be distributed in

binary form.

In order to handle the increasing complexity of software, programmers have long been creating reusable

function libraries. These libraries can be distributed in binary form, allowing distribution that does not

reveal implementation secrets. While libraries allow sharing or sale of code fragments, the granularity and

inflexibility of pre-compiled functions force the libraries to be either overly general or prohibitively specific.

Run-time code generation systems present a light-weight alternative to function calls, where fragments

of code, not necessarily in the form of whole functions, can be manipulated in order to create higher-quality

specialized code. However, the currently existing run-time code generation systems either operate at the

source level or take a non-compositional approach, and thus are not amenable to binary distribution.

Jumbo implements a novel form of run-time compilation, where code fragments in binary form from

several sources can be combined at run time to form efficient specialized code. By basing Jumbo on com-

positional semantics, we avoid the monolithic nature of traditional code generation systems.

A distributed run-time code generation system allows some previously unknown functionality. For in-

stance, in database systems, a client can create query functions that interact directly with the servers internal

calls without either the query or the database implementation needing to be disclosed. Render farms can al-

low clients to specify textures with code that is merged with local, specialized functions, without disclosing

their texture details. Anonymity, copyrights and trade secrets can be retained without sacrificing efficiency.

Jumbo is also useful for non-distributed systems that can take advantage of staged compilation for ef-

ficiency. We show several examples of how Jumbo can be used simply as an optimization tool, allowing
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user-controlled and domain-specific optimizations. Jumbo can additionally be used in a manner similar to

that of macros, providing a way to codify common programming practices.

We also consider the question of optimizing the code generators and the generated code, and present

a rewriting system for Java abstract syntax trees designed to optimize the code generators. This general-

purpose optmizer exploits the compositional nature of Jumbo to make aggressive optimizations on the code

generators for the individual code fragments.
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Chapter 1

Introduction

The complexity of software was labelled a “software crisis” as long ago as 1968[59], and it has only in-

creased since then. Projects on the order of millions of lines of code are not uncommon. To handle this

problem, efficient reuse of code has become an indispensable tool.

1.1 Libraries and Components

The primary way to reuse code has long been to encapsulate related functionality into alibrary. The division

into separate pieces enforces a well-defined interface, making it feasible to reuse code across unrelated

programs. This style of reuse has been highly successful, with a multitude of libraries being available for

various platforms. Some significant libraries, like STL[62], GTK[83], and Lapack[2], are even available for

multiple platforms, with an interface that hides platform differences. Most programming languages have

some system for handling libraries.

The idea of libraries has been extended intocomponents, self-contained entities that implement one or

more externally defined interfaces. Components are often designed to be language neutral instead of being

tied to a specific programming language. To interface with programs, they usecomponent systemslike

CORBA[32], COM[70] or JINI[90] that allow programs to locate components that implement particular

interfaces.

One problem with both libraries and components arises because they are designed to provide a flexible

solution to a number of related problems. While this flexibility is generally a boon for the programmer,

who is more likely to be able to use the library unchanged, it requires that the library solve a more general

problem than most programs require. This generality leads to performance degradation, both because the
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code is not optimized for the specific use, and because the library itself becomes larger, using more resources

than necessary. The ideal library would not only be usable in a wide variety of situations, but it would be

able to adapt itself to suit the situation at hand.

Some library systems allow tailoring the library to the specific use at compile time. In particular, the

STL libraries for C++ make use of C++’s template mechanism to create specialized code. Not only does

it let the programmer get a specific version of the library function, an STL implementation can choose to

automatically inline small functions where appropriate.

1.2 Code Generation

In addition to the question of how libraries should adapt to their use, there are a number of cases where

we would like a program to adapt to input that is not known until after the program has been deployed.

In many cases, some run-time information is static or remains constant over a significant time, and this

information can be used to make more efficient programs. The information can be simple data, such as the

contents of a fixed matrix in matrix multiplication[49], data characteristics, like the size of samples in an

FFT transform algorithm[27], or even structural information, like the composition of a set of network filters

in a router[85, 49]. In the case of domain-specific languages, entire programs are static but created by the

user.

All of these situations can benefit from a run-time adaptive system. Such systems are said to be “staged,”

as they split compilation into several stages: one stage at normal compile time, and one or more stages at

run time. Such systems range from fully automatic run-time partial evaluation to semi-automatic staging

with user annotation to systems that support direct creation and manipulation of code fragments at run time.

Partial evaluation[35] systems offer an automatic and quite powerful code adaptation system. Given

partial (static) input to a program, a partial evaluator attempts to automatically figure out all parts of the

program that only depend on the static input. It then evaluates those parts, leaving only the parts of the

program that require knowing the remaining (dynamic) input. Partial evaluation has been known to give

speed improvements of an order of magnitude, and is applicable to a wide range of problems. However, its

automated nature can cause unrestricted code growth and limits the possibility of applying domain-specific

knowledge in specialization.

To allow more flexible adaptation, several systems have been implemented that allow direct programmer
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control of the code generation process. This allows better restrictions on code growth, as well as use of

domain-specific optimizations to create highly optimized code. However, all of the current systems are

monolithic in nature, in that they assume that all code is being created in the same place.

In this dissertation, we investigate the use of compositional semantics in the implementation of a run-

time code generation system that allows distributed code creation. We describe a Java system with run-time

code generation, dubbed Jumbo. Jumbo allows the programmer to manipulate pieces of code like program

objects, passing them to functions, piecing them together, and eventually turning them into executable code.

Code objects can be anything from single variables or expressions to full classes. The code objects are

not source text, but binary compilations of the source, which both gives increased efficiency and hides the

source from unwelcome perusal. The system is written entirely in Java, and so can easily be deployed on

any platform with a compliant Java system. Jumbo currently implements most of Java 2 (version 1.3).

We have chosen to use Java because one of its main design goals is that executables should be inde-

pendent of execution platform. This goal is achieved by the use of a platform-independent byte code that

is executed in a virtual machine. Thus, any library written in Java is automatically usable on any platform,

without requiring recompilation. This portability greatly facilitates reuse, as only one compilation is needed

to create libraries that can be distributed to any conforming platform. Not only does platform independence

remove the problems inherent in having to recompile libraries on a new platform, it also means that library

designers do not have to divulge their source code in order to have the library be usable on new platforms.

Thus, distributed code generation will be possible without having to deal with the vagaries of different

computer architectures.

The dissertation is structured as follows: In chapter 2, we summarize previous research into staged

compilation and Java optimization. In chapter 3, we give an overview of the current Jumbo system, and in

chapter 4 we show some examples of how Jumbo can be used and how it performs. In chapter 5, we describe

various ways performance could be improved, and in chapter 6 we present a rewrite system that performs

a specialized partial evaluation on Jumbo code generators. In chapter 7, we evaluate the results and give

suggestions for future research.

The reader is assumed to be familiar with compiler construction and programming language concepts,

as well as have a basic understanding of code optimization principles. A working knowledge of Java and

stack-based implementation is also assumed.
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Chapter 2

Background

A program can be seen as a recipe for solving certain problems. The more problems a program can solve, the

more widely applicable it is. However, a highly generalized program may not be easy to use or particularly

fast. Programmers thus face a tradeoff between how many problems a program can solve, and how easily

and efficiently it can do so. However, making it easy and efficient to solve particular problems can be a

daunting task, especially if the problems are complex or heavily intertwined. Trying to write such specific

programs for a number of problems quickly becomes overwhelming. To save effort, programmers strive to

reuse code rather than having to invent the wheel over and over.

The most widely used technique for code reuse is that of system libraries. These self-contained collec-

tions of functions are easily distributed as binaries, and support for calling them is basic to most languages.

However, they tend to be heavy-weight: Their smallest unit is the function, and to be of wide applicability,

they must include support for a number of different cases. When trying to use them for small-scale, spe-

cialized purposes, efficiency suffers, or programming becomes cumbersome. Libraries that have a persistent

state, known as components, face the same granularity problem.

Instead of having to choose between over-general libraries and implementing a specialized solution from

scratch, it should be possible to have something akin to libraries, but with the ability to adapt itself to the

specific task. Such adaptation typically takes the form of generating specialized code for that task. In this

chapter, we describe various approaches to code generation and specialization. This chapter is not intended

as a comprehensive description of all code-generating systems, but merely to show the various flavors of

code generation and their pros and cons.
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2.1 Source-based Specialization

The easiest and most commonly implemented kind of specialization works at the source code level. This

allows a simple implementation that works with strings, is as portable as the base language itself, and, most

importantly, does not have to count the specialization time against run-time performance. However, it cannot

avail itself of data known only at run-time, such as profiling and run-time constants, and it requires access

to the source code, which is not always an option. In this section we describe a selection of source-based

specialization systems.

2.1.1 Source-generating Systems

The most commonly used code generators are those that generate source code to be compiled with a pro-

gram. The generators can either take the form of stand-alone generators, such as Lex[53], Yacc[37], and

some aspect-oriented systems[34], or it can be part of a programming language, like Lisp and Scheme

macros[48], C++ templates[18, 77, 88], and AspectJ[43].

Lex and Yacc are prime examples of stand-alone generators. Almost all compilers, and a number of

other systems (including Bash[26], NetHack1[24] and LessTif[3]), use some implementation of these to

perform the tedious but easily automated tasks of lexing (turning streams of characters into words) and

parsing (turning a series of words into structured forms). They also show the limitations of this approach:

Each has its own special language, normally quite different from the languages that it outputs in, and they

require a separate program to turn them into usable source. These limitations act as barriers to entry: only

tasks that are complex, automatable and easily isolated warrant the effort of using stand-alone generators.

Indeed, several general-purpose libraries include light-weight parsers for simple parsing tasks.

More generally applicable are macro systems, which allow pieces of source code to be assembled as

part of the compilation process. They originated with assembly languages, and were brought into symbolic

programming languages as early as 1960. The first paper on LISP[58] includes asubst function that is

essentially a macro expansion, and some form of macros have been part of LISP and Scheme since then.

These macros are both powerful and well integrated into the language. Paul Graham describes how Lisp

macros were used aggressively in the Viaweb on-line shopping system[30]. Due to the flexibility allowed

1Without which this dissertation would have been finished either a lot sooner or not at all.
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by the macros, they could adapt faster than their competitors, and as a result Viaweb is still used as the

back-end for Yahoo stores while most of their competitors have vanished.

The C preprocessor[42] is a primitive but widely used macro expander. Its major uses are defining

constants, marking pieces of code for conditional compiling, and realizing local syntactic improvements. It

is commonly regarded as unstructured, inelegant and likely to cause more bugs[23, 78]. It is, however, still

in widespread use, especially for ensuring portability.

C++ retains the C preprocessor macros, but adds templates[77], a macro-like system for generic classes.

Unlike C macros, they are a part of the C++ compiler, and thus aware of types. They are used to create

new classes that implement type-specialized versions of more generic classes, e.g.List<int> refers to

a constructed list class that only allows integers as elements. Since the template parameters may contain

constants and even expressions that are evaluated at compile-time, C++ templates allow for a certain style

of partial evaluation called “template meta-programming”[18, 89, 88]. Template meta-programming in C++

has the obvious advantage that it is automatically part of every standards-compliant C++ compiler. However,

the syntax is unpleasant, and it can be hard to control the code explosion.

Aspect-oriented programming (also known as subject-oriented programming)[34, 61] is a programming

paradigm where different aspects are isolated into separate pieces of source code, even when they, in usage,

may be highly intertwined. This “separation of concerns” makes the code more maintainable and easier

to debug. The first tools for aspect-oriented programming were entirely source-transforming tools[44].

They allowed different aspects of a program, such as logging or synchronization, to be described separately

and then woven into a single program to be compiled. AspectJ[43] later evolved away from the source-

transformation process into a language with aspects as proper members, and as such is not a code generating

system any more.

2.1.2 Source-Based Partial Evaluation

Partial evaluation[39, 35] is an automatic specialization technique that creates specialized programs based

on partial input. Given some of the input to a program, a partial evaluator will evaluate any expressions in the

program that do not depend on the remaining input. The remaining part of the program is then “residualized”

to form a new program that takes the remaining input. The original and the residual program should have

the same semantics, but the residual program should ideally be faster. The last 15 years has seen a flurry of
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activity in this area, in particular for functional languages.

One of the main advantages of partial evaluation is that very little programmer input is required. Typ-

ically, only the set of static variables needs to be declared, although adherence to particular programming

styles can increase the efficiency of the partial evaluator. Given the required declarations, the partial evalu-

ator can create highly specialized code. Speedups of an order of magnitude are not uncommon for certain

domains.

However, the high degree of automation is also one of the greatest disadvantages of partial evaluation,

in that only those transformations that can be done automatically are available. More general-purpose spe-

cializers allows the programmer to apply domain-specific knowledge in order to judge the applicability of

transformations and to add transformations that would otherwise not be possible. Likewise, for statically

typed languages there is no way to add new types more suitable to the domain at hand.

Another disadvantage of partial evaluation is that it can easily lead to code explosion. Overeager partial

evaluators can lose more performance by overflowing instructions caches than they gain by using specialized

code. Controlling the code generation typically requires extra annotation or programmer control, rescinding

the benefit of automation.

Partial evaluation is an important specialization tool. Especially for functional languages, partial eval-

uation at compile time can yield significant benefits. Imperative languages have proven somewhat more

difficult to effectively partially evaluate, though some success has been seen[55, 13]. Source-based partial

evaluation is more common than run-time partial evaluation, due to the ease of implementation and fewer

time restrictions. Run-time partial evaluation will be described in section 2.2.1.

2.1.3 AST-Based Code Manipulation

Some systems eschew the textual flavor of the source generating approaches, and allow the programmers

access to the abstract syntax trees of their programs. These include Engler’s MAGIK [21], the Intentional

Programming approach of Simonyi[74], and Sirkin et al.’s GenVoca system[76, 75]. This approach avoids

many pitfalls of source-level code manipulation, such as inadvertent variable capture and expression dup-

lication, by using references in the abstract syntax tree instead of textual similarity to reference entities.

Additionally, it allows better interfacing with both the compiler and the programming tools.
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MAGIK [21] allows the programmer to define AST-level datatypes along with datatype-specific inter-

actions with the compiler. Such interaction can include optimizing based on domain knowledge, security

checks, and debugging statements. The compiler interaction is very explicit and allows significant control

of operations at the cost of ease of use.

Jak is a meta-programming system for Java used in the Jakarta Tool Suite[4]. It allows the programmer

to manipulate abstract syntax trees at run time. It has a powerful quotation syntax with several methods for

manipulating the ASTs. However, it doesn’t include any run-time compilation, only output to Java source.

Intentional Programming[74] does away with the traditional text-editing style of programming, and

instead allows domain-specific editors to manipulate their parts of the code. It resembles MAGIK in that

it allows extending the compiler with specialized constructs, but goes one step further by including the

programming environment. Instead of representing source code as text, it uses a graph structure for which

various editors, debuggers and compilers can be used. This representation allows domain-specific views and

effects to be added by the user and intertwined with source code from other domains. For instance, matrix

manipulations could be represented in a mathematical notation in the middle of normal source text.

GenVoca[75] is a full development system based on the idea of software system generators, i.e. higher-

level definitions of the characteristics of the system, implemented automatically by a set of generators. Its

aim is to automate the software engineering process to the point where a very high level specification can

automatically be turned into highly efficient code.

Because of their use of S-expressions[58], Lisp-like systems do not have as sharp a separation between

compile time and run time as most other languages. Run-time generated S-expressions can be interpreted

and in some cases compiled at run time. The downside is that due to the limited type information, effective

compilation and optimization of Lisp-like languages is difficult. We would like to combine the ease of

run-time compilation found in Lisp-like languages with the static typing and compiled efficiency found in

Java.

Source-level specializers, even those that access abstract syntax trees, do have several shortcomings:

Because they work at the source level, they require access to the source code of the program, which may not

always be possible. They also need more or less extensive compilation systems, which may involve system

setup or long compilation times. These requirements render source-level specializers less useful for fast

combination of disparate sources of code.
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2.2 Run-Time Specialization

Run-time specialization allows the use of run-time invariants and profiling information in the code gene-

ration process. This extra information allows more numerous and accurate transformations, but is limited

by the requirements of using a minimal amount of compile time. This trade-off between code quality and

compilation speed exists in normal compilers, but is especially critical for systems that create code at run

time.

2.2.1 Run-Time Partial Evaluation

Run-time partial evaluation systems differ from other run-time specializers in that they are all declarative.

The programmer declares which functions or variables should be specialized, and the system then performs

binding-time analysis, an analysis that determines which of the program’s variables are bound at compile

time and which at run-time. This analysis indicates which pieces of code can be specialized away, and which

must be residualized, i.e. become the specialized program.

The Tempo system[13] performs run-time partial evaluation for C programs by manipulating blocks

of machine code. While it can generate efficient code for some kinds of problems in a semi-automated

fashion, it does not provide a general programming framework in the way macros and templates do. It uses

the standard C compiler to generate code at compile-time, with labels interspersed to mark blocks of code.

These blocks are then copied at run-time to create specialized code[63].

JSpec[72] is a run-time partial evaluation system for Java, built using the Harissa Java-to-C compiler

and environment. It uses “specialization classes” to indicate which fields and variables are static and which

dynamic. While the concept of specialization classes is interesting and merits more investigation, the loss

of portability due to the dependency on the Harissa environment limits the direct usefulness of JSpec.

Fabius[50] is an ML-based run-time partial evaluator, highly optimized for speed of code generation.

Using specialized emitter code, they can output MIPS machine code at a rate of down to six instructions

executed per instruction generated. Rather than using an explicit specification, Fabius uses currying to

indicate the areas that may be good targets for partial evaluation.

MetaML[82] is a variation of ML and provides a general syntax for staged binary compilation. It

provides a simple staging syntax, and arun function that will evaluate and run staged code. It requires

that a MetaML program with all staging syntax removed still be valid ML program, and automatically
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captures variables between staging levels. The staging syntax serves to indicate to a partial evaluator which

areas of the code should be delayed. Because of the regularity and functional nature of ML, this syntax is

enough to perform a variety of code-generation functions.

Masahura and Yonezawa presents a system called BCS (for ByteCode Specialization) that performs run-

time partial evaluation directly on Java bytecode[56]. Like Tempo, they use templates to create bytecode

efficiently. They use a standard binding-time analysis system that allows the programmer to specify which

method parameters are static or dynamic.

DyC[31] is an extension to C that supports some aspects of partial evaluation, combined with user

annotation. The user must annotate the static variables, and those annotations are used together with binding-

time analysis and aggressive optimizations to eliminate statically known statements. They stop short of

doing the inlinings a partial evaluation system would do, focusing instead on code generation speed. They

use template-based code generation, and obtain significant speedups for some programs, with break-even

points as small as a single iteration in several cases.

Template-based code generation offers an easy way to generate code quickly. Most of the code gener-

ation can be done at compile time, so only copying of blocks of memory remains to be done at run time.

However, creating templates requires that the types of variables are known at compile time, which may not

be the case in a distributed setting. In particular, it rules out the creation of new types at run time,.

Like their source-based brethren, run-time partial evaluators work best on functional languages, and

have to carefully control the amount of code generated. The problem of code explosion is multiplied for

run-time partial evaluators, as code generation time is a run-time cost. Thus, the ability to control code

generation in a flexible way becomes of utmost importance in run-time code generation.

2.2.2 Run-time Code Generation

In contrast to the declarative run-time specializers, some systems take a procedural approach. Aprocedural

specializer, rather than using automated analyses, lets the programmer manipulate fragments of code at

run-time in order to create a specialized program. This approach allows a number of specializations that

declarative specializers may not be able to perform, at the cost of extra programming effort. In particular,

procedural code generation allows domain-specific specialization, using knowledge of special invariants or

probabilities of the target domain to perform optimizations that would not be obvious to a generic specializer.
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Noticeably, a number of these procedural specializers operate on imperative rather than functional lan-

guages. While the lambda-calculus and derived functional languages have an extensive body of research

on analysis and automatic specialization, less is known about how to do binding-time analysis and special-

ization for languages like C and Java. Procedural specializers allow some of the specializations that can

be automatically performed on functional languages, without having to solve the problems of automatic

analysis and specialization for imperative languages. Experimenting with procedural specializers can help

form the body of experience needed to understand automatic specialization of imperative languages, but

procedural specializers have uses beyond that which can be achieved by automatic specialization.

‘C[22] was the first run-time code-generation system for an imperative language. It adds syntax for

specifying and manipulating code fragments in ANSI C. Like MetaML, it captures free variables, but it

does not require the code to be valid if all annotations are removed. Because of the distinction between

expressions and statements in C, such a requirement would be unworkable, as you would never be able to

manipulate code representing a statement. ‘C allows run-time constants to be lifted into code fragments as

constants. ‘C also statically type checks its code fragments. Type safety, however, implies that all types are

known at compile time, so no new types can be declared at run time. This places some potential uses out of

reach.

‘C has some limitations due to its implementation. It does not allow the creation of new types, only

implementations of existing ones. Thus, only a subset of C is actually available for run-time code generation.

It also does not quite treat its code fragments as first-class citizens: there is implicitly a “current function”

being generated, to which all new code fragments belong. Thus, a code fragment only has meaning within

its creation context, and cannot easily be distributed.

DynJava[65] is a type-safe run-time code generation system for Java inspired by Tempo. Like Tempo, it

uses the native compiler (javac ) to create code templates at compile time, and then copies these templates

at run time to generate code. The type-safety of DynJava prohibits the creation of new types (classes) or

methods. DynJava essentially only allows the dynamic generation of implementations of statically declared

methods.

The DynJava paper shows one example with timings, that of a loop-unrolling version of a fast Fourier

transform algorithm. Their best result is on a size 2048 FFT, where they get a speed-up of 22%, though it is

unclear whether the time measured includes the time spent copying code templates. They have high startup
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costs, with their first run of a session taking several seconds on a 500MHz Pentium III. This time probably

includes loading the classes for the code generation system.

There are several systems that provide access to Java Bytecode at run-time, allowing the creation of new

Java code. These systems include JOIE[12] and the Java Class API[19]. While these allow very flexible

code generation, the bytecode syntax is more akin to assembly language than to Java, and thus bytecode-

manipulating systems are generally too complicated for large-scale use.

The “linguistic reflection” system proposed by Kirby, Morrison and Stemple[45] allows run-time code

generation for Java through creating source code and invoking the Javac compiler API. While this allows

a somewhat higher-level approach than the Java Bytecode compilers, the syntax is still hardly amenable to

large-scale usage.

2.2.3 Run-Time Compilers

Instead of choosing between the efficiency of statically compiled code and the portability and immediacy of

interpreted code, some languages attempt to combine the two by using run-time compilation. These systems

either distribute source code or some portable compiled code, which is then compiled at run-time.

Perl, Python, and OCaml are languages where the programs are distributed as source code, to be com-

piled at run-time into an internal bytecode representation which is then interpreted. The Perl Compiler [7]

allows three ways to make a pre-compiled Perl program: Writing out the internal representation (which re-

duces load time), writing out C source (which allows the use of any compiler to optimize it), and compiling

directly to machine code. These are all done as separate invocations of Perl, rather than during regular exe-

cution. Psyco [69] is an extension of Python that compiles functions as part of the execution environment,

gaining a speed-up of about a factor of 2.

Self [36] is a class-less variant of SmallTalk [28] that allows programming during program execution.

Like Perl and Python, it compiles source into an internal representation at run-time. In order to improve

performance, Self collects profiling data, and compiles the functions that are used the most. This pioneered

the Just-In-Time compilation scheme that became widespread with Java.

The Java Virtual Machine was designed to allow both interpretation and run-time compilation (“just-

in-time”, or JIT compilation) of Java bytecode. Most modern JVMs include some form of compilation,

and several JIT compilers perform optimization too. Optimizing JIT compilers include Sun’s HotSpot[80],

12



LaTTe[92], IBM’s Jalapeño[79], and OpenJIT[64]. While they face the same trade-offs between speed and

code quality as run-time code generators, they are normally invisible to the programmer. However, the

special characteristics of JIT compilation may become notable when attempting to optimize the program for

speed, as can be seen in section section 4.2.

Quicksilver [73] takes the idea of JIT compilation further by storing persistent images of the result of the

run-time compilation to use in future invocations. The use of persistence allows them to almost eliminate

compilation time while retaining the speed benefits of an optimizing JIT compiler.

2.3 Java Optimization

In section 5.1, we consider how we may be able to optimize code fragments at an early stage. Some research

has been done into optimizing Java Bytecode, including Cream[10], Soot[87] and JavaGO[46].

Cream uses side-effect analysis to drive well-known optimizations such as loop invariant removal and

common subexpression elimination. The resulting speedup, even with whole-program analysis and liberal

assumptions about native methods, is at best around 10%2.

Soot makes extensive transformations using several internal representations (Baf, Jimple and Grimp).

They show a speedup of 5–10% for several programs, and up to 60% on one example.

JavaGO performs whole-program analysis of the class structure and performs inlining of small, final

methods. Their only example, matrix multiplication with setters and getters, is highly optimizeable, and

yields a 100% speed increase for interpreted systems. There is no indication of how it performs with HotSpot

or on more complicated programs.

Several “Java optimizer” systems focus on the size of the class files, removing unnecessary information

and shortening method and field names to improve transmission and load speeds. The DashO system[67]

additionally does some inlining of wrapper methods and marks non-overridden methods as final.

2.4 Conclusion

The last 15 years have seen a large amount of research into run-time code generation, aggressive opti-

mizations and partial evaluation. Most of the research in partial evaluation has been done with the more

2Throughout the paper, we use “speed” to mean the inverse of “execution time”. Thus, a 50% speedup is the same as a 33%
reduction in execution time.
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theoretically amenable functional languages, while Java in particular has fostered research into just-in-time

compilation. There are some systems that allow programmers explicit control of the code generation, several

of which are implemented for imperative languages.

Compile-time systems have been the object of most research in optimization and partial evaluation,

as they do not need to consider the compilation cost as a part of their performance. However, run-time

optimization and code generation allow the use of invariants and profiling data that may not be available at

compile time, and so offer more opportunities for improving performance. The current high-level run-time

code generators do not allow the creation of new types at run time. In essence, they allow value optimizations

of various kinds, but not the creation of entirely new programs at run-time.

Jumbo, which will be presented in detail in the next chapter, is a novel run-time code generation system,

featuring a simple syntax and straightforward implementation combined with the ability to be used in a

distributed setting. It also includes the ability to create entirely new classes at run-time.
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Chapter 3

An Overview of Jumbo

Jumbo is a distributed run-time compilation system for Java. It has been designed to allow code fragments

to be defined in separate compilations, distributed as binary Java class files and eventually merged together

to form efficient code. In this chapter, we first describe how to use the code manipulation aspects of Jumbo.

We then describe the major components of the Jumbo system, after which we go into more detail on the

combinatorial part that allows easy combination of code.

3.1 Using Jumbo

In this section, we describe the syntax and semantics of Jumbo’s extensions to Java. The primary reason for

constructing Jumbo is to have a system that allows easy run-time code generation. We have added a small

syntactic extension that simplifies code generation, as well as a few functions that implement compilation

and class loading.

To support programmer manipulation of code fragments, we have added quotation syntax reminiscent of

that of Lisp[6]. Thequotedexpression$<x+1>$ 1 is of type Code, and its value represents the expression

x+1 . The expression$<x = x+1;>$ is also of type Code, but its value represents a statement rather

than an expression. Code expressions can also represent run-time constants, switch branches, names, types,

method definitions, field definitions, and class definitions.

In most cases, a quoted piece of code can be parsed on its own, but the user can also specify how to

parse a quote. For instance,$Type<MyName>$ indicates thatMyNameshould be parsed as a type rather

1The dollar sign was chosen to avoid conflict with other syntax, and the less-than/greater-than signs make it clear where quoted
code begins and ends, and to allow multiple levels of quotation.

15



than a variable. TheType indicator is necessary to disambiguate type names from other names, but the user

can specify for any piece of code how it is to be parsed.

The other added syntax isanti-quotation, which allows the programmer to splice together code frag-

ments. We use the antiquote (‘ ) operator to indicate anti-quotation. For instance, the code fragment

$<x*‘Expr($<y+1>$)>$ splices the inner expressiony+1 into the outer, yielding the same value as

$<x*(y+1)>$ . The antiquote is also said to introduce ahole into the quoted code, which can be filled

with code from somewhere else. Any expression of typeCode can be used to fill a hole. For instance, if the

variablec is assigned the value$<y+1>$ , then the expression$<x*‘Expr(c)>$ has the same value as

the self-contained expression above.

Code makeDot(int[] row, Code col) {
Code sumcode = $<0>$;
int len = row.length;
for (int i = 0; i < len; i++) {

if (row[i] != 0)
sumcode = $<‘Expr(sumcode)+

‘Int(row[i])*‘Expr(col)[‘Int(i)]>$;
}
return sumcode;

}
makeDot(new int[]{10, 0, 3, 2}, $<W>$);

(a) Quoting code

0 +
10*W[0] +
3*W[2] +
2*W[3]

(b) Resulting code (decompiled)

Figure 3.1: An example of quotation: A dot-product expression generator

Figure 3.1 shows an example of how Jumbo can be used to generate specialized code. In this case, we

generate a specialized dot-product expression for a particular vector. ThemakeDot method takes a static

array of integers and a code fragment representing an array-valued expression. It iterates over the static

array, using the values as multipliers in the dot product expression (starting with$<0>$ in case the array is

empty). It returns a piece of code specialized to calculate the dot product of the statically known array and

the array returned by the given expression. The result is a Code value, as if the summation shown had been

compiled to Code.

As a simple example of how optimizations can be added, we leave out any part of the computation

where the value is known to be zero2. Other, more complex, optimizations are possible. For instance, if the

2Arithmetic simplification of semi-static expressions is not required of Java compilers, and has so far not been added to Jumbo.
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Kind Usage Kind Usage
Expr Expressions Int Integer constant
Stmt Statements Char Character constant
Name Identifiers Bool Boolean constant
Type Types String String constant
Case List of case branches Float Float constant
Method Method declaration Long Long constant
Field Field declaration Double Double constant
Body List of class members

Table 3.1: Syntactic categories in Jumbo

static array was likely to contain repeated values, those could be collapsed into a single multiplication. Such

domain-specific optimizations are generally beyond the scope of automatic specializers.

Code s = $<switch (x) {
case 1: y = 1;

‘c
z = 2;

};>$;

Figure 3.2: A situation where an explicit syntactic category is necessary

TheExpr tag after the antiquote indicates the syntactic category of the antiquoted expression: whether

the surrounding code should consider the antiquote an expression, a statement, a method declaration etc.

In a few cases, it is impossible to tell from context how to continue parsing after an antiquote, and having

explicit categories also generally eases the job for the parser. For instance, figure 3.2 shows a piece of code

that cannot be correctly parsed without knowing the syntactic category ofc . If c is a statement, then it andz

= 2; are statements within the first case, but ifc is a case branch, it and the following statement form their

own branch of the switch. Also, holes that are to be filled with literals rather than code fragments need to be

marked with the category unless the type of the antiquoted expression can be determined at compile time.

Currently, antiquotation without marking of syntactic categories can only be done for the Name category.

As future work, careful tweaking of the parser may allow the syntactic categories to be omitted in most

cases. Some cases, like the one described in figure 3.2, will always need to be explicitly marked.

Table 3.1 shows all the syntactic categories available. The categories in the right-hand columns “lift”

values from the meta-level to the object-level. Thus,$<‘Int(x)>$ uses the run-time contents ofx to

construct code representing an integer constant. The Name category takes a string, which may be used
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for any identifier (variable, method name, class name, import name etc.). The Type category takes a type as

created by$Type<...>$ expressions, or as defined in the backend Jaemus, which is described below. The

Case category takes a list of switch branches, i.e.,[$<case 1: case 2: break;>$, $<case

3: return;>$, ...] . The remaining categories all take Code values. If no syntactic category is

included, it defaults to Name. This default was chosen because abstracting variables is the most frequent

use of antiquotation, and in many cases the object-level variable name is stored in a meta-level variable.

interface DotProduct {
int dot(int[] V);

}
int[] V = new int[] {10, 0, 3, 2};
String classname = gensym("Dot");
Code c = $<class ‘classname implements DotProduct {

public int dot(int[] W) {
return ‘Expr(makeDot(V, $<W>$));

}
}>$;

DotProduct d = (DotProduct)c.create(classname);
d.dot(V);

Figure 3.3: Loading and using a generated class

Since Java only allows loading of full class files, all quoted code will eventually have to be put together

as a class and compiled into a binary class file. The methodvoid c.generate() causes the run-time

compilation of the code objects. As an important side effect, all classes in the code object are written out as

Java class files3.

This leaves the problem of how to load and access the generated code. Since a code value may define

more than one class, we need to specify which class to load. A call toc.create(String name) on a

Code object will compile the code and output any class files, and then attempt to load the specified class

usingClass.forName(String name) andClass.newInstance() 4. If successful, it returns an

instance of the newly created class. If more instances are needed, a factory method defined in an interface

or a call toClass.newInstance() can create them.

Once the class is loaded, we still need a way to access its methods. Since the Java verifier is required

to verify the existence of all classes and methods used in a program, we cannot just use the names of the

3Java allows user-defined class loaders that can read the byte code out of a byte array. Experiments with storing the generated
classes in byte arrays show no significant speed benefit.

4Java has no way to pass arguments to the constructors of dynamically loaded classes, so the class must either have a zero-
argument constructor or provide a static factory method.
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classes and methods generated, even if we know them. Instead, we have to make the externally accessible

methods of a generated class implement an interface. Using an interface allows us to manipulate generated

classes whose definition we do not know at compile time. Figure 3.3 shows an example of how to load and

use generated code, using themakeDot function from figure 3.1. The class name is generated as a unique

name so that multiple instances can coexist.

3.1.1 Variable Hygiene

When code from different modules or even different sources can be combined, it becomes difficult to ensure

manually that distinct variables have distinct names. In particular, code generating methods that introduce

temporary variables cannot be used recursively if they define variables with fixed names. In this section, we

describe how Jumbo allows this problem to be handled

Jumbo has support for “hygienic variables”, i.e., variables with names that are guaranteed unique even

when combined with other code. They are implemented in the theNameclass, a subclass ofCode which

generates unique names during the compilation process.

Code saveVar(Type t, String name, Code body) {
Name savespot = new Name("save");
return $<final ‘Type(t) ‘savespot = ‘name;

try { ‘Stmt(body) }
finally { ‘name = ‘savespot; }

>$;
}

Figure 3.4: Use of hygienic variables

TheNameclass is used as shown in figure 3.4. ThesaveVar method makes sure that the contents of

a variable is stored during the evaluation ofbody , and is restored at the end of execution, even in the case

of abnormal exit. This method is similar tosave-excursion in Emacs Lisp. By usingName, we ensure

that this variable can be used transparently, without worrying about the possible effects of nesting. Each

usage has its own, unique name.

Variable hygiene is also useful for ensuring uniqueness of names in complicated systems, where it would

otherwise be impractical for the programmer to keep track of names created in different methods or classes.

The hygienic variables are implemented in a slightly non-compositional fashion. By using overloading,

variable definition for hygienic variables invokes a method onNamethat generates a name for the variable.
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This name is stored on theNameobject for later retrieval. It is an error to try to define the same instance of

a hygienic variable several times, or to use it without prior definition.

3.2 The Components of Jumbo

In this section, we describe the three parts comprising Jumbo. They form a layered system, where the lower

layers do not use any knowledge of the upper layers, and could be used by other systems, if so desired.

The three parts are:

• The parser (written by Ava Jarvis). This part does lexing and parsing, using the grammar from the

Java specification [29] with additions for quotation and antiquotation. The parser builds an AST, with

quoted and antiquoted subtrees marked with specific nodes. The AST can either be output as source

code text, or transformed into an intermediate representation (IR form).

The IR form is similar to S-expressions [58], but exists only as objects, never as source text. It consists

of a method name (the name of one of the combinators) and a list of arguments to the method. Using

the Java Reflection API[81], the methods are called at compile time, creating the function objects that

can perform compilation.

Quoted code should not be created as objects yet, but as code that can create those objects at run time.

To this purpose, quoted code in IR form is ’lifted’ to create IR objects for method invocations that

make the quoted code. For example, the code$<x+1>$ would be lifted to the method invocations

shown in figure 3.5. This lifting technique allows multiple levels of quotation, and makes the handling

of quoted code almost trivial.

Constructor.binOp(6, Constructor.getQualifiedName("x"),
Constructor.integerConstant(1))

Figure 3.5: The lifted code for$<x+1>$

In future versions, the AST and IR forms should be combined to allow lifting directly on the AST.

Combining the two forms would also allow easier manipulation of the AST by the traversers in the

rewriting system (see chapter 6).
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• The combinators. The combinators are methods that create objects of type Code, as shown in fig-

ure 3.5. The Code objects are function objects that, when applied to an environment, create Closed-

Code objects that consist of Jaemus code, a result type and an updated environment. The combinators

handle type checking, allocation of virtual registers, method/field type lookup, and the conversion

from AST level into instruction level. The combinators do not depend on the parser. This part of the

compiler is almost entirely compositional.

• Jaemus, the Java byte code back end. Jaemus transforms bytecode instructions and class definitions

into class files in the JVM format[54] and writes them either to disk or into a byte array. Jaemus

handles the construction of the constant pool, the calculation of jump offsets, and the use of specialized

bytecode instructions.

These three parts together form a standard Java compiler that generates code almost exactly like that of

Jikes[9] or Javac.5 Jumbo supports most of Java 1.2. Some features of inner classes, such as multiple levels

of inner classes and certain ways of accessing outer variables, are not currently implemented. Additionally,

Jumbo does not perform all the semantic tests required of a Java compiler. Given incorrect Java source code,

it may produce Java class files that will not be accepted by the JVM class file verifier.

3.3 The Combinators

This section describes how the central part of Jumbo, the combinators, works. The combinators are higher-

order functions that manipulate Code values in a compositional manner.6 For instance, a function that

implements addition could have the type Code×Code→ Code. This function would take the left-hand and

right-hand operators of the addition as arguments, and return an expression for the entire addition.

The Code type is central to our idea of a compositional semantics for code generation. The precise

definition of the Code type depends entirely on the implementation. In our earlier implementations[40, 41],

Code has been just strings of source code, or tuples of strings of assembly language and register allocation

information. Given a reasonable definition of the Code type, we can define programs in terms of code com-

binators, functions without free variables that take Code values as arguments. We can change the definition

5Curiously, while the instructions are the same, code produced by Javac has faster method calls when run in interpreted mode
on Sun’s JVM. Since this effect does not appear when using the JIT compiler, it has little significance in practice.

6The standard notion of a combinator in functional languages is a function object with no free variables or side-effects. Such
functions behave like (partial) mathematical functions, and are thus easier to reason about than functions with side effects.
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Code whileLabel(final String label, final Code test, final Code body) {
return new Code() {

public ClosedCode eval(Environment env) {
Instr startlabel = Instr.genNil("Start of while");
Instr testlabel = Instr.genNil("Test of while");
Instr endlabel = Instr.genNil("End of while");
ClosedCode test1 = test.eval(env);
Environment bodyenv = env.defineBreakLabel(label, endlabel);
Environment bodyenv1 = bodyenv.defineContinueLabel(label, testlabel);
ClosedCode body1 = body.eval(bodyenv1);
return new ClosedCode(Instr.genGoto(testlabel)

.append(startlabel)

.append(body1.bytecode)

.addPop(body1.type)

.append(testlabel)

.append(test1.bytecode)

.addIf(EQ, startlabel)

.append(endlabel),
env, Type.void_type);

}
};

}

Figure 3.6: The combinator for thewhile statement

of Code to implement various ways to compile — source-based, bytecode-base, assembly-based or other

systems.

In Jumbo, we see the Code type as a class that defines a method

ClosedCode eval(Environment env)

so Code= Environment→ ClosedCode. The environment passed into the eval function contains defini-

tions of variables, labels, classes, import statements and other information necessary for compilation. The

resulting object contains a sequence of Java Bytecode instructions in the representation of the back end, an

updated environment, the type of the result, and information about constant-valued variables. Thus, the type

ClosedCode is actually Jaemus Code× Type× Environment× Constant Info.

Figure 3.6 shows a simple combinator, that of the labeled while statement. The outer function does

nothing but return a Code value, with the salient part in the definition of theeval method. The three

arguments to the combinator are required by Java to be declared final in order to be captured by the inner

class.

Theeval method first defines a trio of labels7 that will be used to create the control flow in the while
7The Nil instruction is a Jaemus pseudo-instruction that does not appear in the class file.
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loop. Secondly, it evaluates the Code object for the test. The resulting ClosedCode object is stored intest1

for later use. Since no new definitions can be made inside the test, the environment returned intest1 is

subsequently ignored. Thebytecode field of test1 contains code that will evaluate to a boolean, to be

used in the test.

Next, the environment is updated with information about break and continue targets. Since break and

continue have different possible targets, the two are kept track of separately. The updated environment

containing the break and continue labels is used for the evaluation ofbody . The environment used for

body is discarded afterwards, as no variable declarations or labels are visible outside the while.

Finally, a new ClosedCode object is created, containing the instruction sequence of the while loop,

the environment (unmodified, as the while statement defines a new scope from which no declarations can

escape), and the result type, which isvoid . The bytecode sequence is created by appending together lists of

Jaemus instructions. Additional instructions are added to jump over the body before the first test, to remove

any value left on the stack by the body, and to perform the conditional jump based on the result of the test.

Code whileLabel(final String label, final Code test, final Code body) {
return new Code() {

public ClosedCode eval(Environment env) {
Instr startlabel = Instr.genNil("Start of while");
Instr testlabel = Instr.genNil("Test of while");
Instr endlabel = Instr.genNil("End of while");
ClosedCode test1 = test.evalWithLabels(env, startlabel,

endlabel, endlabel);
Environment bodyenv = env.defineBreakLabel(label, endlabel);
Environment bodyenv1 = bodyenv.defineContinueLabel(label, testlabel);
ClosedCode body1 = body.evalNoUse(bodyenv1);
return new ClosedCode(Instr.genGoto(testlabel)

.append(startlabel)

.append(body1.bytecode)

.append(testlabel)

.append(test1.bytecode)

.append(endlabel),
env, Type.void_type);

}
};

}

Figure 3.7: The combinator for thewhile statement, using variants of theeval function.

Since we are using function objects (of class Code) rather than simply functions, we have the oppor-

tunity to define several functions on each function object. These functions can be used to perform local
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optimizations. Figure 3.7 shows the while-combinator again, using optimizing function calls instead of just

eval .

For the test part, we perform jump optimization [1] by passing three labels toevalWithLabels : The

label to jump to on true values, the label to jump to on false values, and the next instruction after the test.

Passing these labels allows the combinator for the test to use a compare-and-jump instruction instead of

pushing a boolean value onto the stack which would immediately be consumed.

We also know that any value left on the stack by the last statement in the body is not going to be used.

Since Java requires that an assignment expression evaluate to the assigned value, such extra values are quite

common, and preserving them just to pop them immediately afterwards is suboptimal. TheevalNoUse

causes the expression to be evaluated for its side effects only, without leaving the result value on the stack.

These two optimizations are not required by the Java specifications, but they are the main differences

between the naïve translation to bytecode and bytecode produced byjavac .

This combinator is relatively simple. Other combinators have to handle things like constant propagation

(as required in Java), field/variable distinctions and simple control flow analysis. The source file for the

combinators currently has over 5000 lines.

Since Java, unlike C, allows forward references of fields, methods and classes, Jumbo uses multiple

passes over the code to extract the required information. Theeval method merely performs the last of four

passes. Because of inner classes, each pass must go through all the code, so all combinators have a method

definition for each pass. Each pass operates on an environment, though the first pass uses a slightly different

environment.

An earlier version of Jumbo had one pass collect all classes, and the two next passes just operated on the

collected classes. This setup did not give significant time savings, complicated the code, and did not allow

for the correct handling of free variables and inner classes. The current version does a full traversal of the

combinators for each pass.

The first pass extracts class names for all classes being defined. This pass allows us to generate the

fully qualified class names and to add the classes to the class lookup table in Jaemus. Additionally, any

free variables are collected and stored in the environment. The method used to make this pass is called

defineClasses .

The second pass, performed using thedefineSupers methods, sets up the superclass relationships
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in the class table. Since a class can be defined before its superclass, these relationships cannot be found in

the first pass, where the package name of the superclass may not yet be resolvable.

The third pass, performed using thedefineMembers methods, defines the methods and fields. This

pass also sets up the implicit constructors and super-constructor calls required by Java. While in most cases

the super constructor call is a zero-argument call, if the super class is an inner class in the same class as the

current class (i.e., a sibling class), the super constructor call must pass a reference to the outer class. Thus,

super constructor calls must be made after the second pass. It might be possible to combine the second and

third passes, since most super-constructor calls do not require knowing the name of the super class.

Capture of free variables in inner classes in Java is done by passing the free variables to the constructor of

the inner class and storing them in private fields. The information on free variables collected in the first pass

is used in this pass to add the fields and constructor arguments that handle the free variables. Additionally,

any initializers of fields are collected here, so they can be added to the constructors in the next pass.

The final pass is theeval pass, in which actual Jaemus code is created, as described above. Addition-

ally, during this pass every class definition callswriteClassFile to generate a class file from the entry

in the Jaemus class lookup table.

3.4 Compositionality

The compositionality of the central part of Jumbo is an essential feature of the design of Jumbo. Suppose

C : Program→ Code is the basic semantic function of the language. Compositionality implies that one

can compile programs with holes, because it means that the following function is well-defined:CH(P ) :

Program-with-hole→ Code→ Code = fn P [] ⇒ fn a ⇒ C(P [A]), whereA is any fragment such that

C(A) = a.

The compositionality makes it trivial to combine separate pieces of code. Consider again the function

of type Code× Code→ Code that implements addition. Either of the operators could be a literal piece of

code, or it could be some other expression of type Code, like a variable or a method call. The function itself

cannot ask whether the operators are given as literal or as something else, only what their values are.

Another benefit of a compositional compiler over source- or AST-based system is that the program is

defined in terms of code-generating code. This allows us to optimize and specialize the code generators

as we would any other program, rather than having to create Jumbo-specific optimizers. Essentially, we
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encode the meaning of the program by using combinators, whereas an AST does not have meaning until it

is converted to some other form. An optimizer working on an AST must predict how the AST will be used

before it can perform significant optimizations on the AST nodes.

Jumbo needs no support for combining code except in the parser and AST, where quotation, antiquota-

tion and lifting are defined. Additionally, compositionality makes it easier to debug the compiler, as there

are fewer side effects that can cause hard-to-trace errors. Finally, compositionality is the very thing that

allows us to perform optimizations on the code generator. Since the meaning of an element is a function

of the meanings of the sub-elements, we can safely perform code transformations that would otherwise be

blocked by side effects.

While compositionality is important for the part that combines code, there are places where it would

be more cumbersome than helpful. The parser and AST are not compositional. The parser uses JavaCUP

and JFlex, separate programs not built for compositionality. The AST performs certain operations on its

nodes that would be impractical if compositionality were enforced or that make for a cleaner interface

with the combinators. These transformations include decoding array declarations likeint[] a[] (a two-

dimensional array), adding default super constructor calls to constructor bodies, and managing the types

of array initializers likenew int[] {{},{}} . These transformations impose some extra constraints on

what can be used in a hole, but only for unusual cases.

Both the parser and the AST are used before the code distribution phase, and therefore do not need

to be compositional to allow combination. The backend Jaemus is not compositional either. Again, no

combination of code happens at this stage, so compositionality here is not necessary. Furthermore, the

handling of constants (currently kept in a hash table) would be significantly slower in a compositional

implementation.

The middle part of the compiler — the combinators — handles type checks, pseudo-register allocation,

constant propagation and conversion from an AST-like form into the assembly-like form of Jaemus. This

part is where code can be combined, and the part where compositionality is needed. The combinators are

function objects passing information between them in an almost purely compositional environment. The

result of a combinator additionally contains some Jaemus code, a result type and some constant propagation

information.

We have chosen to make one part of the environment non-compositional: The class lookup table. Class
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lookup is an expensive operation in Java, even if the class is already loaded into the virtual machine. Mini-

mizing the number of class lookups reduced the code generation time by almost an order of magnitude for

some examples. Since a class once loaded is the same for the remainder of the execution, and classes have

unique fully qualified names, non-compositional class loading does not interfere with the compositionality

of the rest of the compiler. To an external viewer, the class lookup table has all classes loaded from the start,

but internally it operates in a lazy fashion.

Compositionality can to a certain degree be enforced by use of thefinal keyword in Java. A field

markedfinal must be assigned in the constructor or it will have the default value for its type. It cannot be

changed thereafter, thus the field behaves like an element in a tuple. Marking a field final has the advantage

of static enforcement of the tupleness of the field. The disadvantage is that making updated copies requires

explicit copying of each field of the object. For instance, when adding a variable to the environment, we

want to make a new environment from the old one, with just the list of variables updated. Theclone()

method, which implements a fast, shallow copy, doesn’t allow us to set final fields in the new object. Instead,

each field must be extracted from the old tuple and assigned in the constructor, a time-consuming operation.

3.4.1 Code Generation Using Templates

For the final code generation, Jumbo creates a piece of byte code for each combinator at run time, piecing

them together to form larger chunks and finally whole programs. Some code generating systems use a static

compiler to create chunks of low-level code that can be copied together to generate code quickly. In this

section, we consider whether using templates would be a viable option for a system like Jumbo.

Template-based code generation has been used successfully in a number of projects, including Tempo[63],

BCS[56], DyC[31], and DynJava[65]. In template-based code generation, static compilation produces a

number of fragments of low-level code, which are then copied together as part of the code generation pro-

cess, patching loop indices, variables and other adjustable items appropriately. It has the advantage over

regular code generation that fixed code chunks can be generated very quickly, but it requires correct hand-

ling of all parts that cannot be determined at static compile time.

Templates might be a way to speed up code generation for Jumbo, but only if there are enough parts of

quoted code that are totally static. Elements that could break the staticness include: Undefined variables,

lookup of fields and methods not yet defined at compile time, variable indices, control flow changes, and
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$<int y = 3;
‘z = foo(x*3+‘z, x+y);

>$

Figure 3.8: Some of the obstacles to template-based code generation: Unknown types of holes, non-hygienic
variables, and overloaded operators and methods.

missing type information in overloading resolution.

Figure 3.8 shows some of the ways these problems can appear. Here,x is a non-hygienic variable, so

its type is unknown.z is a hole, whose type is also unknown. Whilex*3 must be a numeric value, the lack

of a type forz means that the addition can be either numeric addition or string concatenation. The method

lookup for foo depends on the types of its arguments, but both arguments here have undecided types. If

foo cannot be resolved, the type ofz cannot be inferred from the return type either.

Control flow changes and variable indices must necessarily be handled by backpatching. Field/method

lookup and overloading resolution all have three parts to them: Possible conversion of the operand types,

selection of the correct operator, and determination of the result type. For most operators, including method

references, the actual operator can be backpatched. Operand type conversion will be required when method

or field lookup requires widening, e.g. from int to double, and that can only be determined when the method

signature is known. For non-hygienic variables, the load and store instructions must also be adjusted at run

time to match the type. The type of the return value is required to either pop the value off the stack or it will

be needed in further evaluation.

Strings pose a special problem, as the plus operator is overloaded to mean string concatenation whenever

one of the operands is a string. This problem could be handled as a special case, as numerical addition is

more likely to be found in generated code. String concatenations also follow a strict pattern, so a generic

template for string concatenation generation could be built in. The overloaded numeric types are less of a

problem, as they only require a change in operator rather than an entirely different calculation.

Type inference may be an aid in determining possible types. If a non-hygienic variable has been used

in a numeric context earlier in the same code fragment, it will certainly not later turn out to be a string, and

the string case can be avoided. Other restrictions on the possible types may be inferred from assignment

expressions and method argument passing. Since these type inferences can happen at compile time, we can

afford to be as exact as possible. In the example in figure 3.8, we can guarantee thatx is a numeric type,

and so mustx+y be. This limits the lookup possibilities forfoo . If foo can now be resolved, the possible
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types ofz would be known, allowing us to resolvex*3+‘z to either numeric or string addition.

Java bytecode contains a number of optimized instructions for loading the lowest-index variables and

pushing frequently used constants. A backpatcher would not be able to use these optimized instructions to

increase performance and reduce code size. However, they may make little difference once the bytecode has

been compiled in the run-time system.

While some types may be determined at compile time, run-time generated types obviously cannot be

determined in advance, and so will cause further calculations to operate with unknown types. For applica-

tions that use Jumbo’s unique ability to create new types at run time, template-based code generation would

probably be of little benefit.

Using the system callSystem.arrayCopy() , copying fixed chunks of code could conceivably be

performed at speeds approaching one bytecode instruction per instruction generated. However, code gene-

rator startup costs would be high, as arrays in Java cannot be stored as static data, but must be created as

part of the class initialization process at the earliest.

While template-based code generation has proven effective for other run-time code generation systems,

the two unique features of Jumbo, compositionality and creation of new types at run time, make templates

a less appealing option than would appear at first. Using templates would also require a radical redesign of

Jumbo, as parts of code generation would be performed at compile time.

3.5 Conclusion

In this chapter, we have introduced Jumbo, a run-time code generation system for Java. Jumbo compiles a

version of Java 1.2 extended with code objects, although some aspects of Java are not implemented. Code

is represented as first-class objects, using a compositional semantics for Java, making it easy to perform

code composition. Two new syntactic elements — quotation and anti-quotation — allow simple creation,

manipulation and combination of code objects. The next chapter will show some extended examples of the

use of Jumbo, along with measurements of their performance.
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Chapter 4

Examples

To evaluate the usability and performance of Jumbo, we have implemented and run several examples of

code-generating programs. In this chapter, we describe how some possible uses of code generation can be

implemented using Jumbo, and, where appropriate, we compare the performance of the code-generating

version with equivalent non-generative implementations.

A run-time code generation system like Jumbo has many potential applications. The most obvious

are the examples that use run-time values to optimize a subsequent computations (so-called “value-based

optimization”). Other applications are not so much for speed as for programmer convenience or for hiding

data. In this chapter, we describe the following applications:

Dot Product: This simple example, also used in other chapters, shows how code generation can be used

for data specialization.

Convolution matrices: This example is taken from the DyC paper[31], and shows a case where a signifi-

cant speedup can be had for realistic problems using data specialization.

Product Line Architectures: This example shows a simple implementation of a technique for systematic

selection of features in program design.

Anonymous database queries:In this example, not only do we get a speedup, but we also show how the

binary nature of code fragments can be used to protect privacy.

Numerical algorithms: This example shows both how Jumbo can be used for efficient implementation of

domain-specific languages, and how loop fusion can be easily implemented with Jumbo.
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The final section mentions some other possible applications, but we believe the possibilities are literally

endless.

4.1 Measuring Efficiency of Code Generation

The two main indicators of performance are the crossover point, where the increased speed of the generated

code pays for the cost of generating it, and the asymptotic speed difference. However, the exact cost of

generating code depends on what we count.

Any use of Jumbo entails the following steps, though possibly interleaved rather than being strictly in

this order:

1. Load Jumbo compiler API.

2. Execute code-combining parts of the program producingCode value.

3. CompileCode value.

4. Load and verify generated classes.

5. Execute generated classes.

When doing a single run of the examples, the cost of loading the compiler classes usually dominates the

cost of compilation by a factor of 10. The classes comprising the compiler currently total 860 kilobytes of

class files, though this number could be reduced by running them through class file compressors. Loading

the classes takes much longer than actually compiling all but the largest programs. Fortunately, it only has

to be done once during a Java session. In a situation where one program runs continually to generate several

code pieces, this startup time may not be relevant to the overall performance of the system.

The cost of loading the Jumbo compiler API could also be ameliorated by making Jumbo a part of the

run-time system rather than stand-alone classes, in which case the verification of the Jumbo classes could

be avoided. Additionally, the classes could be stored in a format more suitable for the particular run-time

system, and might be subject to off-line optimizations. This idea could be carried further, to the point where

the Jumbo system is completely integrated with the JVM. We consider this idea further in section 7.3.

After generating and compiling a new class, it must be loaded into the JVM. The built-in code verifier

in the JVM is responsible for at least half the time spent loading a class. If we have a trusted system,
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we can turn off the verifier completely. However, when combining components from potentially diverse

sources we cannot normally assume such trust. Some applications, such as domain-specific languages,

may be considered trustworthy enough to disable the verifier, which would reduce the cost of compilation

significantly.

We ran all tests on an otherwise idle AMD Athlon XP1700+ machine with 1 GB of memory running

Debian GNU/Linux on kernel 2.4.18. The programs were compiled using Blackdown Java version 1.4.1.

All times are wall-clock time in microseconds, measured with a native interface to thegettimeofday()

function1.

4.2 HotSpot

Measuring the performance of our examples was complicated by the effects of the HotSpot compiler[80, 60]

in the Java Virtual Machine. This section explains how the run-time optimizations of HotSpot interact

with measuring execution speed. Unfortunately, no in-depth description of the workings of HotSpot was

available, so we can only guess at the reasons for the effects we measure.

HotSpot is the just-in-time compiler central to Sun’s Java Virtual Machine. HotSpot not only generates

native code, but also performs profiling and applies optimizations in the most heavily used areas of the

program. By only optimizing the “hot spots” of the program, HotSpot gets more speed increase for the time

spent optimizing than if it had optimized the whole program. The hope is that this additional speed increase

pays for the cost of the instrumentation necessary to figure out the hot spots.

The JVM has three different settings for optimization: Interpreted, Client and Server. In interpreted

mode, no translation into native code is done, nor any optimizations. In client mode (the default), two

levels of optimization are applied, but only methods below a certain size are optimized. In server mode

(intended to be used for long-running programs on servers), aggressive optimizations are applied in a more

fine-grained manner, making the initial performance difficult to predict, but achieving significantly better

performance later in the execution. In server mode, the size of a method still places some limitations on how

many optimizations are applied to the method.

Earlier versions of HotSpot could only replace a method with an optimized version between calls to

1Java by default does not support measuring CPU time (or even microsecond time), and since the JVM runs the optimizer and
garbage collector in separate threads, CPU time would not accurately reflect the actual execution time.
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the method. In such a situation, aggressive inlining would lead to decreased performance, as the inlined

code was less likely to be optimized. In the recent versions, HotSpot can optimize the currently executing

method after a set amount of time has been spent executing it and replace the method during execution. This

“on-stack replacement” is only done when there is a backwards branch in the code, so unrolled code and

other loop-less methods are less likely to be optimized.

Despite the changes in version 1.4, inlining done by HotSpot still appears to be more efficient than hand-

inlining, to the point where “outlining”, the opposite of inlining, has been observed to increase performance.

There also seems to be a threshold for how early in a session optimizations will be applied. Thus, methods

executed early in a session have different optimization characteristics than if they were executed later. The

Sun JVM offers no control over the parameters of HotSpot.

While HotSpot is beneficial to performance in most cases, it also makes it difficult to measure the effect

of other optimizations. When run-time optimizations are applied in an unpredictable manner, the effect

of earlier optimizations can be obscured. In some cases, obvious optimizations at compile-time (such as

method inlining) can decrease performance, not only because the method size may grow beyond the limits

of optimizations, but also because the run-time optimizer may decide to do optimizations earlier when

encountering a number of small methods instead of one medium-sized one.

Figure 4.1 shows the execution time of the simple generated function for evaluating dot products first

shown in section 3.1. To better show the changes over a large expanse of time and code size, all the axes

are logarithmic. Given a static vectorV , we generate a method to multiplyV by another vector. As|V |

grows, so does the size of the method generated. In the graph, the x-axis indicates the size of the method,

the y-axis indicates the number of times the method is called, and the z-axis (vertical) shows the time spent

on execution. The graph clearly shows the two features mentioned above. On the left side of the graph, the

two small jumps show where the two phases of the optimizer appear. Most likely, the first phase is simple

compilation to native code, while the second phase is actual optimization. In each case, the optimizer at first

adds extra execution time (it spends time optimizing code that will not be executed for long), but it flattens

out to a lower level than before. On the right side is a flat plateau, indicating that the method is so large that

HotSpot refuses to optimize it.
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Figure 4.1: Execution time of dot-product
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Figure 4.2: Execution time of dot-product using-server option
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Figure 4.2 shows the execution time for the same function, but with the-server option for the JVM

enabled, again with logarithmic axes. The situation is even more complicated in this case. The two jumps

of optimization are no longer straight, but instead curve in a hyperbolic fashion. This curvature seems to

indicate that execution time, rather than the number of invocations, determines the onset of optimizations.

At a certain level, HotSpot apparently attempts optimization at once, then stops the attempts for slightly

larger methods, leading to the sharp ridge at size 100. There seem to be some attempts at optimizing even

very large functions, though it has little actual effect when we get beyond a thousand iterations.

The timings in this chapter are all done with the-client option. It is the default setting, and thus more

commonly used. Repeated tests have shown that the-server option also causes significant variations in

the running time for short runs. Differences of an order of magnitude are frequent, and in some cases two

orders of magnitude difference were found.

When measuring the execution time of native code, it is standard practice to discard the first few runs

to stabilize the cache. With HotSpot, discarding the first runs may be what pushes us into the optimizing

area. If we want to have an unbiased measurement of the speed, we should either make sure that each

variant runs on its own, with little preceding execution, or discard enough runs that we are sure the same

amount of optimization is applied to all parts. For the latter, it may be problematic to get an even amount

of optimization, as methods may be separately optimized based on how much they are used. A system with

many methods will not exhibit the clear separation of optimized and unoptimized areas, as HotSpot may

optimize just one small method at a time.

Which of the two above measuring methods gives the more accurate estimate of the effect of code

generation depends entirely on the eventual application. For a program that tends to run frequently but

briefly, the first method will depict the actual behavior better. For a program that runs for a long time (such

as a server), the second method is preferable.

To give an idea of how the system would behave in either situation, the examples below show both

cross-over point (the number of iterations necessary to break even) and asymptotic speed increase. The

measurements are done with a minimum of prior execution, apart from loading the compiler classes. The

asymptotic behavior will show how the system performs when run for an extended period of time.
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public static Code makeSumCode(int[] row, String colname) {
Code sumcode = $<0>$;
for (int i = 0; i < row.length; i++) {

if (row[i] != 0)
sumcode = $<‘Expr(sumcode)+‘Int(row[i])*‘colname[‘Int(i)]>$;

}
return sumcode;

}
public static Dot codegenDot(int[] V1) {

String codegenName = "VectorDot_"+V1.length;
Code c = $<public class ‘codegenName implements Dot {

public int dot(int[] V2) {
int product = ‘Expr(makeSumCode(V1, "V2"));
return product;

}
}>$;
return (Dot)c.create(codegenName);

}

Figure 4.3: A code generator for dot products

4.3 Code-Generation Examples

The examples below show show not only that generated code is more efficient, but also that our syntax for

code quotation is easy to work with. In most cases, the syntax in the quoted code is very similar to the

syntax of the equivalent unstaged program.

4.3.1 Dot Product

Calculating the dot product is a central part of matrix operations. Matrix multiplication in particular involves

many dot products. To multiply twon × n matrices,n2 dot products are required.2 One way to improve

the speed of matrix multiplication is to specialize the dot product function. This specialization has the most

effect for sparse matrices, where a specialized version can skip any zero element, though matrices with other

characteristics amenable to optimization could also see an effect.

Figure 4.3 shows how to generate specialized dot product calculators. We create a new class that contains

the specialized method. The body of the method is created by building a single expression with all the non-

zero calculations of the dot product. Using this expression not only removes the overhead of the loop and

2Divide-and-conquer methods have improved on this, to the point where less thann2.376 multiplications are required[14], but
the overhead involved gets progressively more prohibitive.
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Vector size Contents Cross-over point Relative speed
10 90% zeroes 30000 6.40

100 90% zeroes 5500 15.76
1000 90% zeroes 2300 12.45

10 random 50000 2.00
100 random 100000 1.26

1000 random none .28

Table 4.1: Cross-over points and asymptotic relative speed for DotProduct

extra assignments, but also the array lookups for the static array. TheDot interface contains one method,

int dot(int[] v) , that multiplies the vectorv with a fixed vector.

Figure 4.4 compares running times of the normal and the code-generating dot product functions, for

sparse vectors (90% zeroes) with respectively 10, 100 and 1000 elements. The time spent loading the

compiler classes is not included. The break in the curve up to 1000 microseconds for the normal code is

where the JIT compiler starts compiling the code. The cross-over point is visible in all three cases.

Table 4.1 shows the cross-over points and the asymptotic relative speed for both sparse and dense vec-

tors. The speed loss for 1000-element dense vectors is due to the generated code becoming too large to be

optimized.

At a vector size of about 2000, the cross-over point for sparse vectors comes after as many iterations as

there are entries in the vector. At this point, it might be possible to increase the speed of matrix multiplica-

tions by using code generation. The straight-forward method of multiplying matrices dots each row in one

matrix with every column in the other matrix. For square matrices, this method means as many iterations

as there are elements in each row, and thus matrices of size 2000 by 2000 or larger should benefit from us-

ing code generation. Experiments with this style of matrix multiplication has failed to reach the cross-over

point, as the sheer number of classes loaded used too much memory. However, non-square matrices could

reach the cross-over point earlier.

While the specialized dot-product code does not yield a faster matrix multiplication, it does give sig-

nificant speedups especially for sparse vectors. For vectors with 90% zeroes, the crossover point is low

enough to be reached in realistic applications, while for dense vectors, the speed increase is modest and

only reached after tens of thousands of iterations with small vectors. For vectors of size 1000 or more, the

code-generating version is significantly slower than the straight-forward version. This slowdown points out
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Figure 4.4: Running times for normal and code-generating versions of dot product (90% zeroes, log scale)
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Figure 4.5: Running times for normal and code-generating versions of dot product (log scale)
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that code generation should be used carefully — it is not a panacea that automatically speeds up code, but

used under the correct circumstances, it can yield significant improvements.

4.3.2 Convolution Matrices

Convolution matrices[25] are a generic way to manipulate images. Given a matrix of weights, each pixel

value is determined by weighting the surrounding pixels according to the matrix. This method can imple-

ment a number of different effects, including blurring, edge detection, sharpening, embossing and much

more.

In the DyC paper[31], Grant et al. give an example of how matrix convolution can be specialized. They

get an asymptotic speedup of a factor of three on an 11x11 matrix with 83% zeros, with the cross-over point

reached after only one iteration.

Figure 4.6 shows a straightforward implementation of the convolution matrix filter. It applies a square

convolution matrix to an array ofPixel values.3 For simplicity, we omit the handling of the edges of the

image. The outermost two loops loop over the image, while the two inner loops loop over the convolution

matrix. For each element of the matrix, we add the scaled values of the pixel to the sum, which afterwards

is assigned to the output pixels.

The matrix is static for the entire image, and in real-world applications most likely would be used for a

number of pictures. Thusmatrix , cols , i , j , base , andscale contain static values for a given matrix.

We could also considerwidth andheight to be static for a given image size, but it would make little

difference in our system, and would require new code generation to handle different sized pictures.

The code-generating version using Jumbo is shown in figure 4.7. We unroll the matrix loop completely

to remove the loop overhead, and to be able to extract the values from the matrix array. At the same time,

we take advantage of the values in the matrix being static to avoid doing any calculation for the zero entries,

and avoid a multiplication for the one entries. Notice that while we could have given an antiquoted value for

cols/2 , it is being handled by Jumbo itself due to the required constant propagation of Java.

The code generating version is remarkably similar to the original version. The innermost loops were

moved to a separate function because expressions cannot contain loops. Other than that, it is a direct transla-

3It turned out to be faster to use pixel objects than a flat array of integers, as long as the allocated objects are reused. The
getPixelArray andforgetPixelArray functions handle recycling of pixel arrays.
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class Pixel { int red, green, blue; }
class ConvolutionFilter extends SizePreservingFilter {

double[][] matrix;
public ConvolutionFilter(double[][] m) { matrix = m; }
public Pixel[] filter(Pixel[] src, int width, int height) {

final int cols = matrix.length;
Pixel[] output = Convolution.getPixelArray(src.length);
for (int x = cols/2; x < width-cols/2; x++) {

for (int y = cols/2; y < height-cols/2; y++) {
int sum_r = 0, sum_g = 0, sum_b = 0;
final int base = ((y-cols/2)*width)+x-cols/2;
for (int i = 0; i < cols; i++) {

for (int j = 0; j < cols; j++) {
final double scale = matrix[i][j];
if (scale != 0.0) {

final int offset = base+i*width+j;
sum_r += (int)src[offset].red*scale;
sum_g += (int)src[offset].green*scale;
sum_b += (int)src[offset].blue*scale;

}
}

}
output[y*width+x].red = sum_r;
output[y*width+x].green = sum_g;
output[y*width+x].blue = sum_b;

}
}
Convolution.forgetPixelArray(src);
return output;

}
}

Figure 4.6: Original matrix convolution implementation

tion of the original version with but a few annotations of syntactical categories and some care put into which

things to quote and which not to quote.

Table 4.2 shows the speed increase and crossover points of the code generating version versus two

normal versions, one straight-forward and one that avoids multiplying by zero4. Five different matrices

were used: “solid” is a 9x9 matrix with 20% zeroes, “blur” is a 3x3 matrix with 4 of 9 entries being zero,

“relief” is a 5x5 matrix with 40% zeroes, “streak” is a 5x5 matrix with 80% zeroes, and “dyc” is a matrix

similar to that used in the DyC paper[31], an 11x11 matrix with 83% zeroes. The values used are the

averages of five separate runs. Image loading and format conversions are not included in the results shown,

but the time to generate and load the new class is.

4While the simple optimization of not multiplying by zero may seem obvious, the Gimp[57], for instance, does not employ it.
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Code makeConvolveIter(double[][] m) {
final int cols = m.length;
Code convolve = $<;>$;
for (int i = 0; i < cols; i++) {

for (int j = 0; j < cols; j++) {
final double scale = m[i][j];
if (scale != 0.0)

convolve = $<‘Stmt(convolve) {
final int offset = base+‘Int(i)*width+‘Int(j);

sum_r += (int)src[offset].red*‘Double(scale);
sum_g += (int)src[offset].green*‘Double(scale);
sum_b += (int)src[offset].blue*‘Double(scale);

} >$;
}

}
System.out.println(convolve);
return convolve;

}

public SizePreservingFilter convolutionGen(double[][] m) {
Code c = $<

public class ConvolutionGen extends SizePreservingFilter {
public ConvolutionGen() {}
public Pixel[] filter(Pixel[] src, int width, int height) {

final int cols = ‘Int(m.length);
Pixel[] output = Convolution.getPixelArray(src.length);
for (int x = cols/2; x < width-cols/2; x++) {

for (int y = cols/2; y < height-cols/2; y++) {
int sum_r = 0, sum_g = 0, sum_b = 0;
final int base = ((y-cols/2)*width)+x-cols/2;
‘Stmt(makeConvolveIter(m));
output[y*width+x].red = sum_r;
output[y*width+x].green = sum_g;
output[y*width+x].blue = sum_b;

}
}
Convolution.forgetPixelArray(src);
return output;

}
} >$;

return (SizePreservingFilter)c.create("ConvolutionGen");
}

Figure 4.7: Code-generating matrix convolution implementation
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{
final int offset = ((base+(1*width))+2);
sum_r += (((int)src[offset].red)*0.1);
sum_g += (((int)src[offset].green)*0.1);
sum_b += (((int)src[offset].blue)*0.1);

}
{

final int offset = ((base+(2*width))+1);
sum_r += (((int)src[offset].red)*0.1);
sum_g += (((int)src[offset].green)*0.1);
sum_b += (((int)src[offset].blue)*0.1);

}
...

Figure 4.8: Unrolled matrix loops

Image size Matrix Relative Crossover
speed point

100x100 solid 1.68 21
100x100 blur 1.97 25
100x100 relief 2.03 11
100x100 streak 4.83 7
100x100 dyc 6.97 2
320x217 solid 1.68 4
320x217 blur 1.87 3
320x217 relief 1.98 3
320x217 streak 4.69 1
320x217 dyc 6.86 1
640x435 solid 1.64 1
640x435 blur 1.69 1
640x435 relief 1.81 1
640x435 streak 3.05 1
640x435 dyc 5.88 1

Picture size Matrix Relative Crossover
speed point

100x100 solid 1.41 35
100x100 blur 1.39 63
100x100 relief 1.47 24
100x100 streak 1.84 30
100x100 dyc 2.17 10
320x217 solid 1.41 7
320x217 blur 1.35 6
320x217 relief 1.46 5
320x217 streak 1.90 3
320x217 dyc 2.17 2
640x435 solid 1.41 2
640x435 blur 1.38 1
640x435 relief 1.42 1
640x435 streak 1.63 1
640x435 dyc 2.05 1

Table 4.2: Speedup and crossover points of code-generating convolution compared with naïve and zero-
avoiding implementations
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All three programs reached a stable speed after only three iterations, so we stopped iterating at ten

iterations. Crossover points beyond that are extrapolated.

The speedup is modest for the dense matrices and somewhat better for the sparse matrices. Against the

naïve version that does not avoid multiplying with 0, we see a five-fold speed increase for the largest pictures.

The zero-avoiding version fares better, only being about half as fast as Jumbo on the sparse matrices. The

time spent generating code, however, is recouped within a single iterations for pictures of just one-quarter of

a megapixel. Given that most digital cameras today create pictures of several megapixels, picture processing

is a field with excellent opportunities for benefiting from code generation.

4.3.3 Product-Line Architectures

Batory advocates the idea of “product-line architectures” as a way to handle the increasing complexity of

software[5]. In product-line architectures, the building blocks for programs are the desired features. These

building blocks can be combined to automatically form variants of a complex system.

Batory demonstrates how software libraries suffer from a combinatorial explosion because of the many

possible combinations of largely orthogonal features. A library implementing a deque has a number of

different features to choose from: Are the operations synchronized, does the deque implement the generic

“container” interface, do the deque elements form a doubly-linked list, are the deque elements reused in a

free list, etc. A library attempting to implement all combinations of features would grow to unmanageable

size, yet any combination of features may be of use to some programmer.

Batory’s solution to this problem is to allow specific combinations to be generated according to simple

specifications. The combinations are made possible by separating each feature into a distinct layer of sub-

classes implementing that specific feature. Using a system that understands composition of these layers, he

achieves code size and performance as good as or better than available hand-coded libraries.

Figure 4.9 illustrates the concept of using layers of subclasses to select features. If, for instance, only

features I and III were included, the implementation would include classes A-I, B-I, and A-III. Class C would

not exist at all, as the only feature requiring it was not included. Externally, class A would be presented by

A-III and class B by B-I, the lowest subclasses in the selected layers.

As a concrete example, consider figure 4.10, which describes the PLA layers of a deque with several

possible features. At the top is an abstractDeque class without implementation. The first level is optional
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Class A Class B Class C

Feature I

Feature II

Feature III

Class A-I Class B-I

Class B-II Class C-II

Class A-III

Figure 4.9: Feature selection in a product-line architecture system. Rows represent features, columns repre-
sent classes, shaded intersections represent subclasses implementing specific features.

Deque

FinalDeque

Dynamic Backing Static Backing

Double-linked List

FreeList Alloc

Synchronized

Figure 4.10: The inheritance hierarchy for a PLA implementation of a deque.
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and allows the deque to be regarded as a double- or single-linked list. The second level allows selecting

whether the elements should be stored dynamically using a linked list, or statically in an array. Selecting

both linked lists and array backing allows constant-time access to elements and easy traversal given any

element. These two levels together allow five different variants, as dynamic backing requires a linked list.

The third level gives the option of using a free-list to store discarded elements, or simply allocating new

elements all the time. The optional fourth level makes all operations on the deque synchronized, essential

in multi-threaded applications, but inefficient otherwise. Eventually, we get to the finalDeque implemen-

tation. As the inheritance arrows indicate, each level is formed by inheriting from the previous selected

level.

The number of combinations of features that can be selected with this model is five for the first two

levels and two each for the remaining two levels, a total of 20 different deques. Maintaining even this modest

number of separate deque implementations would be cumbersome and error-prone, whereas maintaining the

individual parts of this system reduces redundancy and allows the programmer to concentrate on getting the

elements right. Batory’s example uses 8 layers of features, giving rise to 144 possible different deques even

without repeating any features.

Jumbo allows an easy implementation of what Batory implemented as a stand-alone system. By ab-

stracting on superclass names, we can automatically pick the desired set of features and generate code for

them. Figure 4.11 shows a simple way to select among possible features. For each selected feature, new

subclasses implementing that feature are added, and the name of those classes are remembered to be used

as superclasses for the next level. Note that not all classes involved need to be subclasses for each feature.

Some features have restrictions on their usage. In this example “dynamic” requires “dll” or “sll”, one

of either “dynamic” or “static” list allocation must be selected, and one of either “freelist” or “alloc” ele-

ment allocation must be selected. Other restrictions could be an ordering of features or mutually exclusive

features. The feature selection in this example is primitive, but could easily be improved to automatically

check complex feature restrictions similar to the systems described by Batory[5].

The implementations of the features themselves are simple. The implementations of three of the features

are shown in figure 4.12. The “dll” feature addsnext andprev references to the elements, ahead field

to the deque, and methods to add and remove elements from the deque (only the front adders and removers

are shown). Thehead field is required so the links can be updated when elements are added and removed.
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Code makeDeque(List features) {
Iterator featureiter = features.iterator();
String nextfeature = (String)featureiter.next();
Code code = $<class DequeElem implements PLADequeElem { Object data; }>$;
String parentdeque = null, parentelem = "DequeElem";
if (nextfeature.equals("dll")) {

code = makeFeatureDLL(code, parentdeque, parentelem);
parentdeque = "DLLDeque"; parentelem = "DLLElem";
nextfeature = (String)featureiter.next();

} else if (nextfeature.equals("sll")) {
code = makeFeatureSLL(code, parentdeque, parentelem);
parentdeque = "SLLDeque"; parentelem = "SLLElem";
nextfeature = (String)featureiter.next();

}

if (nextfeature.equals("static")) {
code = makeFeatureStatic(code, parentdeque, parentelem);
parentdeque = "StaticDeque";

} else if (nextfeature.equals("dynamic")) {
if (!(features.contains("dll") || features.contains("sll")))

throw new Error("Feature ‘dynamic’ requires ‘dll’ or ‘sll’");
code = makeFeatureDynamic(code, parentdeque, parentelem);
parentdeque = "DynamicDeque";

} else throw new Error("Must specify either ‘dynamic’ or ‘static’");
nextfeature = (String)featureiter.next();

if (nextfeature.equals("freelist")) {
code = makeFeatureFreelist(code, parentdeque, parentelem);
parentdeque = "FreeListDeque"; parentelem = "FreeListElem";

} else if (nextfeature.equals("alloc")) {
code = makeFeatureAlloc(code, parentdeque, parentelem);
parentdeque = "AllocDeque";

} else
throw new Error("Must specify either ‘freelist’ or ‘alloc’");

if (featureiter.hasNext()) {
nextfeature = (String)featureiter.next();
if (nextfeature.equals("synchronized")) {

code = makeFeatureSynchronized(code, parentdeque, parentelem);
}

}
code = $<‘Stmt(code)

public class FinalDeque extends ‘parentdeque implements PLADeque {}
public class FinalElem extends ‘parentelem { }>$;

return code;
}

Figure 4.11: The feature-selection part of a PLA-like deque implementation in Jumbo
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Code makeFeatureDLL(Code code, String parentdeque, String parentelem) {
return $<‘Stmt(code)

public class DLLDeque extends ‘parentdeque {
DLLElem head;
void addFront(DequeElem newelem) {

((DLLElem)newelem).next = head; head.prev = (DLLElem)newelem;
head = (DLLElem)newelem;

}
DequeElem getFront() {

DequeElem frontelem = head; head = head.next;
head.prev = null; frontelem.next = null;

}
}
public class DLLElem extends ‘parentelem {

DLLElem prev, next;
}>$;

}
Code makeFeatureStatic(Code code, String parentdeque, String parentelem) {

return $<‘Stmt(code)
public class StaticDeque {

DequeElem[] elements = new DequeElem[2];
int frontindex = 0, backindex = 0;
void addFront(DequeElem newelem) {

if (frontindex == 0) {
DequeElem[] newelements = new DequeElem[elements.lenght*2];
System.arrayCopy(elements, 0,

newelements, elements.length, backindex);
backindex += elements.length; frontindex = elements.length;

}
elements[--frontindex] = newelem;
super.addFront(newelem);

}
DequeElem getFront() {

super.getFront(frontelem);
return elements[frontindex++];

}
public int size() { return backindex-frontindex; }

}>$;
}
Code makeFeatureDynamic(Code code, String parentdeque, String parentelem) {

return $<‘Stmt(code)
public class DynamicDeque {

public int size() {
int size = 0;
for (‘parentelem tmp = head; tmp != null; tmp = tmp.next)

size++;
return size;

}
}>$;

}

Figure 4.12: Selected feature implementations for a PLA-like deque implementation in Jumbo
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At the next level, we choose how to store the elements in the deque, either in an array or using a

linked list. The “static” feature manages an array of elements, but makes sure to call the methods in the

super class that might manage the linked lists. The “dynamic” feature instead can rely on the linked list

implementations to store the head reference, and so only needs to implement thesize() method. Further

features are implemented in similar ways.

Java’s type system has some influence on how the PLA’s can be designed. In this case, while the external

interface specifies thatObject s are stored in the deque, internally they are wrapped in aDequeElem ob-

ject. Since Java does not allow overloading on return types, the allocation feature must wrap eachObject

in a DequeElem object and transition between the internal and external method names. Additionally, the

feature implementations must use the correct types. For instance, the “dynamic” feature uses the extensions

that “dll” or “sll” have added, and so must refer to‘parentelem rather thanDequeElem to ensure the

existence of thehead andnext fields. The “static” feature can choose which it refers to, as it doesn’t

depend on the additions.

We must also be careful as to which classes implement the interfaces used to make the code externally

visible. ThePLADeque interface, specifying external method names, can only be implemented from the

allocation layer onwards, while thePLAElem interface must be implemented at the beginning, so the classes

can use the type. In a more complex system, such restrictions could prove problematic.

This example shows how Jumbo’s code generation features can be put to other uses than just run-time

specialization. Using Jumbo, we can implement product-line architectures simply and efficiently, allowing

the programmer to concentrate on correct implementation of the individual features. If fact, we could go

one step further, and combine the different versions of the same method into one, avoiding the overhead of

super method calls. As long as the combined method does not become too large to optimize, this should

give some additional savings.

4.3.4 Anonymous Database Queries

Whether for legal reasons, to prevent embarrassment, or to protect commercial secrets, many database users

may want to keep their queries hidden from database owners. At the same time, downloading the entire

database may be impractical or even illegal. Some way to allow a database search to take place without

showing the details of the search criteria is desirable. This example shows how to implement anonymous
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AnonDB result =
select(new String[] "name", "income" ,

and(lessthan(cell("income"), cell("expenses")),
equals(cell("job"), constant("Manager"))));

Figure 4.13: An SQL-like query using Java function calls.

BoolClause lessthan(final Source s1, final Source s2) {
return new BoolClause() {

public boolean eval(Object[] row) {
return ((Integer)s1.getVal(row)).intValue()

< ((Integer)s2.getVal(row)).intValue();
}

};
}

BoolGen lessthan_gen(final SourceGen s1, final SourceGen s2) {
return new BoolGen() {

public Code eval(Code row) {
return $<((Integer)‘Expr(s1.getVal(row))).intValue()

< ((Integer)‘Expr(s2.getVal(row))).intValue()>$;
}

};
}

Figure 4.14: Turning a direct query into a code-generating query

database queries for a very simple database.

This implementation can be done by compiling the query into a program that can then be transmitted to

the database server and run there, transmitting just the results back to the user. The binary form conceals

the criteria and at the same time allows the creation of an optimized query. If so desired, the database

server can provide the user with the building blocks for the query in a form that allows for database-specific

optimizations.

In this example, we show how a query can be built for a simple relational database. We assume a simple

database containing rows of object arrays. The objects in the database can be either strings or integers.

We can perform simple SQL-like queries that return new databases as their result. Figure 4.13 shows how

a query can be created using Java function calls. The example query returns the name and income of all

managers whose income is less than their expenses. Creating such a query from an actual SQL statement is

a simple parsing task. By using function objects, the implementations of the query functions take up only a

few lines each.
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public void queryRow(Object[] row, AnonDB newdb) {
if ((((Integer)row[2]).intValue() <

((Integer)row[3]).intValue()) &&
row[1].equals("Manager")) {

Object[] newrow = new Object[2];
newrow[0] = row[0];
newrow[1] = row[2];
newdb.addRow(newrow);

}
}

Figure 4.15: The code generated for the query

Figure 4.14 shows one of the original query functions and its code-generating equivalent. TheSource

objects represent either column names or constants, in the form of a function object that will return the

appropriate value for the current row. The original function is evaluated once for each row.

In the code-generating version, we manipulateCode objects rather than the actual values in the function

object. TheSourceGen objects return code snippets that either get a particular row using direct array

lookup or consist of a single integer constant. ThegetVal() method creates code that looks up the

column indicated by theSourceGen object in the row indicated byrow . The result is a new piece of code

rather than a boolean. Not only can the lookups in the database rows be statically indexed, the result rows

can be created using only static indices.

In figure 4.15, we see the code generated for the query in figure 4.13 on a database with the columns

Name, Job, Income, Expenses. The code shown here is just the body of the loop iterating over the rows. The

column names have been entirely compiled away, and the result rows are created by direct array copying

rather than by iterating over the result rows.

To evaluate the performance of the generated database queries, we ran four different queries on a simple

database, comparing the generated version with a plain version. The database used had four columns:

Name, Job, Income, Expenses. The first two are strings, and the last two are integers. We ran the queries on

databases of up to 1 million entries. The results returned from the queries are in the form of new databases

with the information copied from the database queried.

The four queries we ran are:

empty: Selects no rows. This query gives the minimum speedup. The running times for this query are

shown in figure 4.16. The corresponding SQL statement would be:
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Query Codegen time (micros) Stddev Crossover point Relative speed
Empty 15348 2111 12500 3.0
Managers 16119 2111 7500 10.7
Losses 22882 1816 15000 3.1
Complex 24130 1756 32000 3.4

Table 4.3: Speedups and crossover points for database queries

SELECT name FROM db WHERE Job = Mangler

losses: Selects managers whose income is less than their expenses. This query is slightly more complex

and selects 14% of the entries. The running times for this query are shown in figure 4.17. The

corresponding SQL statement would be:

SELECT name, income FROM db

WHERE income < expenses AND job = Manager

managers: Selects all info from all managers. This query selects 57% of the entries, and extracts all

information from them. It illustrates how much faster the generated code is at creating the result

database. The running times for this query are shown in figure 4.18. The corresponding SQL statement

would be:

SELECT name, income, job, expenses FROM db WHERE job = Manager

complex: Selects no rows by evaluating a complex statement. This isolates the time spent evaluating the

query statement and spends no time building a result database. The running times for this query are

shown in figure 4.19. The corresponding SQL statement would be:

SELECT name FROM db

WHERE income < expenses AND job = Manager

AND income < expenses AND job = Worker

The asymptotic speeds and crossover points are shown in table 4.3. Crossover points fall in the area of

1000 to 10000 database entries, which by todays standards are small databases. The asymptotic speed goes

from 3 times as fast for the empty query to over 10 times as fast for the managers query.
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Figure 4.16: Execution time of “empty” query (logarithmic scale)
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Figure 4.17: Execution time of “losses” query (logarithmic scale)

 1000

 10000

 100000

 1e+06

 1e+07

 100  1000  10000  100000  1e+06

R
un

ni
ng

 ti
m

e 
(m

ic
ro

se
co

nd
s)

Database Entries

Generated
Plain

Figure 4.18: Execution time of “managers” query (logarithmic scale)
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Figure 4.19: Execution time of “complex” query (logarithmic scale)

There is a difference in speed gain of only 13% between the empty query and the complex query. Since

both of those queries create an empty result database, this difference is the gain in evaluating a more complex

query condition with code generation. At the same time, the difference between the empty query and the

managers query is a factor of 3.6. Since the selection criteria for those two queries are equally complex,

this speedup is entirely due to faster creation of the result database. This difference in speedup indicates

that while modest speedup is gained by using code generation to evaluate the query condition, assembling

the result database using specialized code yields significant speedups. The code generator for the condition

checking is significantly more complex than the code generator for the result builder, yet yields comparable

speedup, indicating that using code generation for the result builder alone would be a simple way to speed

up queries.

This example implements a small but important part of database queries. The code-generating version

was easy to implement, and would be easy to extend to implement joins and other important features of

full databases. Thus, not only does Jumbo allow a simple implementation of anonymous queries, it yields a

speed gain in the process.

4.3.5 High-Level Numeric Algorithms

This example is taken from Hardwick and Sipelstein’s paper on using Java as an intermediate language[33].

In their paper, they describe the translation from NESL, a high-level language for vector and matrix calcula-

tions[8], through VCODE, a stack-based intermediate form with powerful vector and matrix primitives, into

Java, implementing each VCODE primitive as a Java method.
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A high-level domain-specific language like NESL is a good target for code-generating systems. Direct

translations like that of Hardwick and Sipelstein use a separate method for each primitive, causing the

creation of numerous intermediate vectors and matrices. Using a code-generating approach, we can perform

implicit loop fusion and do away with extraneous loops and allocations.

function linefit(x, y) =
let

n = float(#x);
xa = sum(x)/n;
ya = sum(y)/n;
Stt = sum({(x - xa)^2: x});
b = sum({(x - xa) * y: x; y}) / Stt;
a = ya - xa*b;
chi2 = sum({(y - a - b * x)^2: x; y});
siga = sqrt((1.0 / n + xa^2 / Stt)* chi2 / n);
sigb = sqrt((1.0 / Stt) * chi2 / n)

in
(a, b, siga, sigb);

Figure 4.20: Line-fitting algorithm in NESL

Our example is the line-fitting algorithm shown in Appendix 1 in Hardwick and Sipelstein. Figure 4.20

shows the NESL source code for the algorithm. NESL uses syntax similar to Haskell’s list comprehensions

for loop iterations. For instance,{(x - xa)^2: x} means “create a new vector with each element being

the square of the corresponding element of the vectorx minusxa ”.

A direct translation of the NESL code in figure 4.20 into Java is shown in figure 4.21. The main difference

is that infix operations have been replaced with prefix operations. This implementation depends on a number

of (overloaded) methods to perform vector operations like subtraction and multiplication. Each function that

public void printFit(double[] x, double[] y) {
double n = (double)x.length;
double xa = sum(x)/n;
double ya = sum(y)/n;
double Stt = sum(square(sub(x, xa)));
double b = sum(mul(sub(x, xa), y))/Stt;
double a = ya - xa*b;
double chi2 = sum(square(sub(sub(y, a), mul(x, b))));
double siga = Math.sqrt((1.0 / n + xa*xa / Stt) * chi2 / n);
double sigb = Math.sqrt((1.0 / Stt) * chi2 / n);
System.out.println("("+a+", "+b+", "+siga+", "+sigb+")");

}

Figure 4.21: The line-fitting algorithm translated directly into Java
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public static Code makePrintCodegenFit(final CG_Vector x,
final CG_Vector y) {

return $<
‘Stmt(assign("n", len(x)));
‘Stmt(assign("xa", div(sum(x), "n")));
‘Stmt(assign("ya", div(sum(y), "n")));
‘Stmt(assign("Stt", sum(square(sub(x, "xa")))));
‘Stmt(assign("b", div(sum(mul(sub(x, "xa"), y)), "Stt")));
double a = ya - xa*b;
‘Stmt(assign("chi2",

sum(square(sub(sub(y, "a"), mul(x, "b"))))));
double siga = Math.sqrt((1.0 / n + xa*xa / Stt) * chi2 / n);
double sigb = Math.sqrt((1.0 / Stt) * chi2 / n);
System.out.println("("+a+", "+b+", "+siga+", "+sigb+")");
>$;

}

Figure 4.22: The line-fitting algorithm translated into a code-generating form

returns a vector creates a new array to hold the result. This implementation is not the VCODE translation

normally used for NESL, but the semantics are similar. While some inlining can be done, the intermediate

arrays are difficult to optimize away.

Figure 4.22 shows how the algorithm for line fitting looks using the code-generating syntax. Apart from

the abstraction on assignment and variable names, this code looks the same as the direct translation. Notice

that when no vectors are involved, the evaluation can be done using normal infix syntax. The resulting code

has only one iteration for each line (resulting from the use ofsum), the remaining iterations have been fused

into statements within the sum iteration.

The code-generating version abstracts on the assignment operation, using overloading to ensure cor-

rect typing of the assigned values. Figure 4.23 shows two examples of code generation functions. Each

vector operation becomes a function object that performs abstraction on the assignment.CG_Vector and

CG_Double are both function object types, representing vectors and doubles, respectively. They each pro-

vide anassign method that given a variable name will return code that assigns the expression value to that

variable. The vector types also provide alen method that will generate code to get the length of the vector.

Figure 4.23(a) shows the method for subtracting a number from each element of a vector. It assigns the

two relevant values to intermediate variables, then assigns the result of the subtraction to the variable named

in the argument (v ). The index variablei is passed along to the given vector, and will eventually be used

to look up the value in an actual array. Note how the vector is not traversed in any way, but just a single
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static CG_Vector
sub(final CG_Vector c,

final CG_Double n) {
return new CG_Vector() {

Code len()
{ return c.len(); }
Code assign(String v,

String i) {
String x = gensym("x");
String n1 = gensym("n");
return $<

‘Stmt(c.assign(x, i))
‘Stmt(n.assign(n1))
double ‘v = ‘x-‘n1;

>$;
}

};
}

(a) Vector subtraction

static CG_Double
sum(final CG_Vector c) {

return new CG_Double() {
Code assign(String v) {

String i = gensym("i");
String x = gensym("x");
return $<

double ‘v = 0;
for (int ‘i = 0;

‘i<‘Expr(c.len());
‘i++) {

‘Stmt(c.assign(x, i))
‘v += ‘x;

}>$;
}

};
}

(b) Vector summation

Figure 4.23: Two of the code-generating methods

element is handled.

In figure 4.23(b), we see how to produce code for summing the values of a vector. Summation is the

only operation currently implemented that iterates over the vector; all other operations simply operate on

the elements. We pass down the index to the expressions inside the sum and assign the resulting value to the

variable given as argument.

The abstraction on assignments is necessary because of Java’s distinction between expressions and state-

ments. The right-hand side of an assignment must be an expression, and thus cannot contain a for-loop. This

problem could be eliminated by introducing a “block-expression”, essentially a statement that always has

a value. Experiments with manually simulating block expressions show that the extra assignments account

for about 50% of the time spent. However, we do not currently want to extend Java with more than the mi-

nimum syntax required to support code generation. The fact that these extra assignments are not optimized

away by HotSpot shows the limited range of its optimizations.

Figure 4.24 shows a (decompiled) example of the code generated by this system. This fragment is gene-

rated from the line assigning “chi2”, which involves vector-number calculations, vector-vector calculations,

element-wise squaring of a vector, and the sum over a vector. All the element-wise operations have been

reduced to simple operations and assignments, avoiding 4 of 5 loops and all 4 allocations compared to the
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double chi2 = 0;
for (int i_45 = 0;

i_45<y_27.length;
i_45++) {

double x_50 = y_27[i_45];
double x_48 = (x_50-a);
double x_51 = x_26[i_45];
double x_49 = (x_51*b);
double x_47 = (x_48-x_49);
double x_46 = (x_47*x_47);
chi2 = (chi2+x_46);

}

Figure 4.24: Code generated for the linechi2 = sum({(y - a - b * x) 2̂: x; y}); (decom-
piled)
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Figure 4.25: Execution time of line-fit (logarithmic scale)

direct implementation. Additionally, the code is of simple and regular form, making optimizations easy.

Figure 4.25 shows the execution time in microseconds for executing the code with varying vector sizes.

The “Normal” line is the execution time of the direct translation that uses a method call for each vector

operation. The “Generated” line is the time spent in the Jumbo version, including compilation, but excluding

the time spent loading the Jumbo classes. Above 10,000,000 elements, Java ran out of memory. The

cross-over point is at 20,000 elements in the vector, and the speed of the generated version goes towards

approximately 2.6 times that of the normal version.

This example does show how Jumbo’s code generation can be used to perform powerful transformations.

Not only are all the method calls heavily inlined, several full loops have been fused together. While this

example shows a significant speed increase, the increase is not as much as would be expected for such an
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powerful optimization. Once again, we see the influence of the HotSpot compiler. An equivalent system

implemented in a fully compiled language should get an even bigger speedup due to additional opportunities

for optimizing. If we added a “block-expression” to Jumbo, the reduced amount of copy assignment would

bring the speed increase up to about a factor of 5.

The code-generating version is remarkably similar to a parsed version of the original NESL code. The

building blocks are simple to write and understand, and overall Jumbo shows itself as a useful tool for

implementing domain-specific languages, as well as for performing high-level optimizations.

4.4 Other examples

In this section, we discuss various other examples, both from the literature and from our own tests, and how

Jumbo would be able to handle them.

Macros: Jumbo can be used in a manner similar to macros in Scheme[11]. This requires that all code

except for macro definitions be quoted, and the compilation is a two-stage process, where the first

stage compiles the macros, and the second stage uses the macros and compiles the rest of the code.

This may be useful in light of the fact that Java has no macro system of its own.

Data structures: Because Jumbo allows the creation of new types, it is possible to use it to create spe-

cialized data structures. This can be used to create polymorphic types, or potentially for other uses.

Since no other code-generating system for a statically typed language allows the creation of entirely

new types, little research has been done so far into what can be done in this direction.

Eliminating tail recursion: Poletto et al.[66] has an example where a tail-recursive binary search algo-

rithm is specialized with regards to a certain data set. This effectively inlines the entire data set as a

series of if-statements, eliminating array lookups and function calls. Jumbo could do the same, but

the size of the generated function would preclude run-time optimization in most cases, thus not giving

any benefits.

Exponentiation: Many systems involve exponentiation of large entities like matrices. Reducing the num-

ber of multiplications necessary for the exponentiation could save significant amounts of time. The

Russian Peasant algorithm reduces the number somewhat, and Knuth[47] shows that for some cases,
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it is possible to reduce it even further. Since this can be tested without multiplying the large entities,

a code generating exponentiation algorithm could be useful.

Unrolling: The dot product example shows one kind of unrolling that works well for small, static vectors.

However, for large vectors or vectors where the contents are not known, partial unrolling[1] is a well-

known optimization technique. Especially in parallel systems, this allows more optimizations, but in

Java, there is less gain from this technique. Only if subexpressions inside the loop body can be made

static can significant speedups be achieved.

Marshalling: Marshalling of arguments for remote procedure calls in, e.g., CORBA[32] is done with

compile-time generation of stub code. Jumbo could be used to generate the stubs at run-time. For

function calls known at compile time, Jumbo offers no speed-up, but allows the marshalling code to

be generated without external tools. Jumbo might however be used to create new methods in CORBA

components at run time.

Function iteration: Newton’s method, as well as most fractal calculations, involve iterating a specific

function numerous times. In the case of Newton’s method, the derivative function can be automatically

created and fully inlined. For fractal calculations, even a slight optimization will be repaid many times

over. Jumbo should be of use in both cases.

Filter composition: Both network layers and graphics filters are implemented as a number of primitive

filters placed in sequence. Using techniques similar to those of section 4.3.5, these might be optimized,

removing loop and invocation overheads. For filters with arguments, more optimizations may be

possible because the arguments may be static. However, we cannot blindly inline the code, as we may

end up with unoptimizable code.

4.5 Conclusion

This chapter has given some examples of what Jumbo’s code generation system can be used for. In some

areas, significant speed increases can be achieved by specializing code for specific uses. Typical execution

speeds of the generated code are 200% to 300% of the original code, with some examples running about an

order of magnitude faster.
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The NESL example in particular shows how judicious application of interpreter specialization can be

combined with application-specific optimizations to increase running speed. At the same time, as a combi-

nator-based code generation system, Jumbo allows opaque code generation, yielding the benefits of instance-

specific code without requiring the disclosure of secrets of implementation or usage.

The crossover point, where the cost of compilation is regained by the higher execution speed, depends

on the speed of the code generators as well as on the speed of the final code. In the next chapter, we shall

investigate various ways we could speed up the code generation process.

The syntax of Jumbo is simple in practical usage, though somewhat hampered by the necessity of using

syntactical categories for many antiquotes. The simplicity encourages experimentation and allows more

complex applications. At the same time, Jumbo allows the creation of new types at compile time, opening a

new realm of possibilities.
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Chapter 5

Optimizing

The Jumbo system described in chapter 3 is stable and publically available. In this and the next chapter,

we discuss the possibilities for optimizing Jumbo code. The principal optimizations that seem possible

arise directly from the compositional nature of the Jumbo compiler — another advantage over a monolithic

compiler. The optimizations discussed in these two chapters are experimental, and have been implemented

as a proof of concept. Practical implementation of them is a topic for further research, and beyond the scope

of this dissertation.

The previous chapter showed how the crossover point, where the time spent generating code is recouped

by faster code, affects the potential applications. The lower the crossover point, the more areas can benefit

from code generation. We pursue this goal by investigating optimizations.

There are two areas where we could perform optimizations: On the generated code, or on the code ge-

neration process. Optimizing the generated code would increase the overall efficiency when execution time

dominates code generation time, but could raise the cross-over point if the optimizations are too expensive.

Optimizing the code generation process will lower the cross-over point and thus make the code generator

applicable in more situations.

For reasons discussed in section 5.1, we have rejected the idea of optimizing generated code. Optimizing

the code generators, on the other hand, appears very promising. In section 5.2, we describe various possible

ways to optimize the code generation process. As a proof of concept, we have implemented one of the

possible approaches to optimizing the code generators. The results of this implementation are shown in

section 5.4, while a full description can be found in the next chapter.
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5.1 Optimizing the Generated Code

In this section, we consider the problems inherent in optimizing the code as it is being generated. We

will first discuss the problems inherent in optimizing Java byte-code, and then briefly discuss what special

problems are inherent to optimizing code fragments.

Some research has been done into how to efficiently generate code in staged compilation. The Fabius

system[50] uses as few as six instructions per instruction generated. However, the generated code normally

is not subject to optimizations, as that would take too much time while generating code. The fact that code

generated this way still gives significant speedups is an indication of the power of staged compilation.

5.1.1 How Much Can Java Byte-code Be Optimized?

Many conventional optimizations, such as strength reduction and register allocation, are relatively ineffective

in Java bytecode. The interpretation overhead is the same to perform a division as to perform a logical shift

operation. Any attempt at transforming multiplication into a series of additions and shifts would create

slower code in all but a few special cases. We cannot fill in delay slots or make use of instruction-level

parallelism at the bytecode level. Register allocation is of limited effect, too, as most JIT compilers perform

their own register allocation[92, 38]. Since a number of other optimizations mostly work by allowing lower-

level optimizations to take place, those are also of diminished use. The JVM, having access to machine

code, is expected to perform optimizations, rather than the compiler.

The author’s Masters Thesis[10] describes an off-line system (Cream) that performs optimizations di-

rectly on bytecode. Cream performs common-subexpression folding, dead-code elimination and loop-invari-

ant removal using an extensive inter-procedural side-effect analysis. Even with full analysis and liberal

assumptions about native methods, the speedup was barely measurable.

The Soot system from McGill University[87] transforms Java bytecode into three different internal re-

presentations in order to perform various optimizations. When optimizing the SPECjvm98[15] benchmarks,

they report speedups of up to 60% on a single instance (a ray-tracing program), but in most cases a more

modest speedup of less than 10%.

From the previous, it should be obvious that the prospects of doing standard optimizations at an early

stage are poor. Even systems with extensive knowledge about the program do not gain much speedup, and
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we will be further hampered either by the fragmented nature of the code, if working at compile time, or by

the time restrictions if working at run time.

5.1.2 Optimizing Code Fragments

As the above section shows, there is little to be gained by optimizing Java byte-code. However, run-time

code generating systems that generate other languages than Java byte-code, or that creates native code for

Java, may benefit from optimizing code fragments. In this section, we discuss the effect that code fragments

and code with holes has on performing optimization.

When trying to optimize a code fragment, we face the problem of needing information that is not yet

available. There are two distinct kinds of missing information that we will encounter: missing information

about the surrounding code, and missing information about holes in the code.

The missing information about surrounding code prohibits a number of optimizations. Unless this in-

formation is passed to the code fragment, as for instance done in DynJava, any external reference would be

unknown and thus untyped. This lack of types would prohibit a number of optimizations, but larger pieces

of code may have some optimization opportunities arise within the fragment.

When a large piece of code contains a hole, we may want to apply aggressive optimizations, but be

hindered by the hole. If an expression can contain assignment statements, even a hole of expression kind

would prevent most optimizations like constant propagation and common subexpression folding. From

our experience with Jumbo, we have found that the code inserted rarely affects the possible optimizations.

Most expression holes do not assign any outside variables; many do not even call any methods. Statement

holes are more likely to cause problems, as they can contain variable declarations, throw statements, break

statements, and are more likely to contain method invocations or assignments.

One way to use the frequent simplicity of holes is to do conditional (assumption-based) optimizations.

Say that we want to do constant propagation, and we are targeting one variablex . We could assume that

the holes do not assign tox and go ahead with creating an optimized version wherex has been constant

propagated. When the hole is filled, we check if the inserted code does not assign tox . If it does assign to

x , we will have to fall back on the unoptimized version.

There are two important problems to consider in this scenario: Avoiding combinatorial explosion, and

figuring out what assumptions to make. If we make a separate assumption about each hole, we would
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get a number of optimized versions exponential in the number of holes. Even for one hole, if we make

assumptions about several variables, we again get a number of optimized versions exponential in the number

of variables. To avoid this, we should only build assumptions when there are significant benefits, and

combine as many assumptions as possible with each set of optimizations. Forced use of variable hygiene

would help decrease the number of assumptions required, as we would be able to reason about what variables

can be affected by a hole.

Figuring out what assumptions to make is most easily handled by starting with the assumption that the

holes do nothing and then figuring out which optimizations give the most advantage. Only when significant

optimizations are possible should we consider what assumptions are necessary. The choice of optimizations

to attempt is also affected by the use of assumptions: local optimizations are less likely to be blocked by

holes than optimizations that span significant amounts of code. Useful assumptions could include whether

a variable is read from or written to in the hole, whether there are branches out of the hole, whether global

variables or fields are read or modified, and whether any functions are called. Each assumption should be

checkable in linear time, so that as little time as possible is spent checking the assumptions at run time.

5.1.3 Optimizing Code at Load-Time

While the code generated by the Jumbo system itself is as optimized as that of Javac, the separate definitions

of code may cause some simple patterns of inefficient code. Computer folklore says that (ironically) most

compilers do not optimize computer-generated code as well as hand-written code. For example, the example

in section 4.3.5 assigns every temporary value to a variable. Experiments with folding the assignments into

expressions show that this pattern is responsible for almost 50% of the execution time, even after HotSpot

optimizations were applied. Some, but not all, of these could be removed by introducing more powerful

constructs in Java, like a “block-expression” (i.e. a sequence of statements that have a value). However,

such additions should be considered carefully before they are introduced into a language.

The simplest of use-def analyses would find the extraneous assignments mentioned above, and might

improve execution speed at only a slight increase in compilation time. However, load-time optimizations,

like JIT compilers, need to balance the improved execution speed and the extra time spent optimizing. The

optimizations must be likely to pay off, and not require costly analyses. At the same time, there is the danger

that we perform the same optimizations as the JIT would later do, but spend more time on it. We currently
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do not consider any load-time optimizations profitable enough to warrant the work involved in implementing

them.

5.2 Optimizing the Code Generators

Rather than attempting to optimize the code that is being generated, it appears more promising to optimize

the code generation process itself. In this section, we look at various ways such optimization can take place.

Experimenting with the dot product example shown in figure 3.1, we have found that up to 80% of the

compilation time is spent in the higher-level combinators when compiling large classes. Smaller classes

share more overhead of creating and loading class information, and may spend only about 50% of their time

in the combinators. Compiling away the combinators at the earliest possible stage (precompilation) would

improve the overall compiler speed.

Rather than attempting traditional optimizations, which have only a limited effect on Java, we can exploit

the statically known structure of the code fragments, together with the definitions of the combinator meth-

ods, to perform specialization of the code generators. For instance, the expression$<‘x+1>$ is turned

into binOp(PLUS, x, intConst(1)) as part of the compilation process. Such expressions, being

composed almost entirely of known functions, and devoid of any holes, are viable targets for attempts at

partial evaluation. Additionally, since the combinators are designed in a particularly systematic way, they

should reduce easily.

We consider two different ways to reduce the code generation time in this section. First, we look at

doing abstract evaluation (also known as abstract interpretation)[16] to evaluate those parts of the code

that are statically known. We then introduce the approach described in detail in the next chapter, that of

using a rewriting system to perform partial evaluation. Both these approaches are only possible due to the

compositional structure of the compiler, which allows us to perform optimizations on the compiler internals.

5.2.1 Partial Evaluation with Abstract Evaluation

The obvious way to perform partial evaluation on the code generators would be to apply some existing

partial evaluation system. However, the only two partial evaluation systems available for Java, JSpec[72]

and BCS[56], do not support enough of Java to be applicable to Jumbo. In particular, neither implements

exceptions, which are used in several core parts of Jumbo.
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One possible way of performing partial evaluation is by a form ofabstract evaluation. In abstract

evaluation, a program is evaluated, not for its final value, but for some approximation of the value that may be

possible to find at an earlier stage. In this method, we attempt to evaluate the combinators, using the normal

eval methods, but with a special environment that does not cause an error when variable lookup fails.

Combinators that are successful in all lookups create ClosedCode objects abstracted on variable indices.

When a combinator fails to look up a variable, field, method or class, it instead creates a special version

of the ClosedCode objects that allows reconstruction of the original combinator call. At the end, instead

of writing the results to a class file, the ClosedCode object will emit code that re-creates the combinators,

except that some will be replaced by objects that directly create Jaemus code.

As an example, consider the expressionx-(y*2) , and assume thaty is defined in the surrounding

environment as a non-constant integer variable at local index 3, whilex is not defined in the current environ-

ment. The combinators for this expression are shown in figure 5.1(a). When attempting abstract evaluation,

the inner part(y*2) , being fully known, can be fully evaluated.

mathOp(SUB, variable("x"),
mathOp(MUL, variable("y"),

constant(2)))

(a) Combinators for the expressionx-(y*2)

mathOp(SUB, variable("x"),
new Code() {

ClosedCode eval(Environment env) {
return new ClosedCode(

genAbstractLoad(Int, 3)
.addConstant(2)
.addMath(MUL, Int),
env, Int);

}
});

(b) The expression of figure 5.1(a) reduced by abstract evalua-
tion (simplified)

Figure 5.1: A simple expression and its reduction by abstract evaluation.

In the result of abstract interpretation in figure 5.1(b) (simplified for readability), we see no traces of the

method bodies of the combinators involved. Instead, a textual representation of the result of evaluatingy*2

has been generated as a function object, and replaces the combinators. This result is in the form of calls to

Jaemus to construct Java byte-code instructions. The first instruction loadsy from the (abstracted) variable

index 3. The next instruction loads the constant 2, and finally an integer multiplication is performed. The

other combinators, unable to reduce to Jaemus code, have been reconstructed.
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This method suffers from the obvious deficiency that lookup errors totally blocks optimization around

them. Only when a subpart of the code is fully defined within the code is there any chance of optimization.

This method would be more viable if we had a way to get type information about entities defined outside

the code fragment.

This approach is specific to the structures found in Jumbo, and so would not directly apply to other Java

code, though the techniques may be used in other places. It would be beneficial if the optimizations were

applicable to Java code in general.

5.2.2 Partial Evaluation by Rewriting

Instead of the abstract interpretation method, we decided on a source rewriting system that allows more

fine-grained specialization. Not only do we consider rewriting systems a more promising approach, it also

has the advantage that it is not specific to Jumbo. This system can be applied to any Java code to attempt to

increase performance. Our selection of optimizations and assumptions does reflect the structure of Jumbo,

and so may not be the best set of optimizations for typical Java code.

We define a number of simple rewrite rules that, while individually small enough to be easy to implement

and verify, together can perform significant optimizations. The rewriting system works on the AST level of

lifted code, i.e. the syntactic structure has been turned into combinator calls. The code is first normalized

to a flattened state with all names put into fully qualified form. Thereafter, individual method calls are

inlined (currently by manual selection), and a set of code-reducing rewriters repeatedly performs constant

propagation, arithmetic reductions, copy assignment propagation and other small optimizations. The details

of the rewriting system are shown in chapter 6.

A (near optimal) possible result of rewriting is shown in figure 5.2, somewhat simplified for readability.

Realistic results will be shown below in section 5.4. Each formal argument to the combinators has been

replaced with the actual arguments, and wherever the method bodies became small enough, they have been

inlined into the calling method. The first operand to the subtraction does not shrink at all, as we cannot find

x in the environment. However, the second operand, the multiplication, can shrink significantly when we

find y in the environment. The resulting bytecode and type is inserted into the body.

The two approaches of abstract interpretation and inlining by rewriting have significantly different cha-

racteristics. The inlining method will produce the most reduced combinators possible, whereas the abstract
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new Code() {
ClosedCode eval(Environment env) {

ClosedCode cp1 = variable("x").eval(env);
Type t = cp1.type.lub(Int);

return new ClosedCode(cp1.bytecode
.addConvert(cp1.type, t)
.append(Instr.genLoad(3, Int)

.append(Instr.genConst(2))

.addMath(MUL, Int))
.addConvert(Int, t)
.addMath(SUB, t),
env, t)

.addInfo(cp1);
}

};

Figure 5.2: The expression of figure 5.1(a) reduced by a hypothetical rewriting system.

interpretation method will only produce reduced code when able to reduce it to Jaemus code. However, the

inlining method would likely create larger methods than abstract interpretation, which will increase the time

spent loading and verifying the code fragment. Both methods suffer when types are unknown, as overloading

cannot then be resolved. Some examples of the effect of the rewriting system are shown in section 5.4.

5.3 Reducing the Load Time of the Compiler

In the cases where the whole compiler is loaded every time code is generated, it may pay off to reduce the

size of the compiler. It takes about an order of magnitude longer to load and verify the 860 kilobytes of class

files currently comprising the Jumbo compiler than it does to compile and load a new class. Tools such as

Jax[86], DashO[67] and Jshrink[84] can compress the class files by 30–50% by removing unneeded classes

and methods and by shortening names. Such compression would certainly have a significant effect on the

time spent loading the compiler.

However, when the code is used in a distributed manner, a class file optimizer cannot tell which classes

and methods are necessary in the end. This approach would be most suitable when using Jumbo as an

intermediate language for compiling a higher-level domain-specific language, where the set of combinators

used is clearly defined. Some obfuscation, generating shorter method and field names, may also be possible

for distributed system, but to a limited extent.

The most drastic way to improve the compiler loading time would be to include the compiler in the
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JVM. If the compiler were to be loaded as native code at start-up time, it would bypass the overhead of

parsing and verifying the class files entirely. This would require either re-writing the compiler in the same

language as the JVM in question, or compiling the current compiler to native code. The first alternative

would furthermore allow tight integration with the JVM, including any optimizations that may be available

there. In particular, it would be possible to avoid Java bytecode altogether, and compile directly into the

JVM’s preferred execution format. The downside of this is that the system is not portable — the user’s JVM

would have to be updated before it will work, and the user would be required to use a JVM that supports

code generation.

5.4 Rewriting Examples

As argued in the previous section, Jumbo code generators are, in principle, subject to optimization by ap-

plying rules of “programming logic” — inlining and simplification. In this section, we illustrate this by

rewriting some examples. Because inlining tends to produce large methods, we have stuck to simple pro-

grams, and even then we have made some elisions for readability. The underlying programming logic that

we use to perform these optimizations is defined in chapter 6.

5.4.1 Rewriting Integer Constant

We start off with a very simple example: An integer constant ($<1>$ ). We will show how the constant

expression can be expanded with inlining and then reduced with the code-reducing rewriters. Eventually, it

turns into a method that builds and returns a singleClosedCode object.

Before any of the optimizing rewriters are applied, we perform a flattening that makes the code easier

to reason about. Flattening makes package and class names explicit and turns complex expressions into a

series of simple expressions and assignments to temporary variables.

The initial code (after flattening) is shown in figure 5.3. We first create aCode object representing an

integer constant and then pass it toSystem.out.println (to avoid the entire calculation being removed

as unused). The code that will be rewritten next is marked in bold face.

The only thing we can do here is inline the invocation ofintegerConstant . Since it is a static call,

it is easy to inline, as can be seen in figure 5.5 (for clarity, we elide package names as well as the unchanged

outermost parts). The originalintegerConstant method being inlined is shown in figure 5.4.

70



import uiuc.Jumbo.Util.*;
import uiuc.Jumbo.Jaemus.*;
import uiuc.Jumbo.Compiler.*;

public class IntConst {
public static void main(java.lang.String[] argv) {

uiuc.Jumbo.Compiler.Code c;
c = uiuc.Jumbo.Compiler.Constructor.integerConstant(1) ;
{

final java.io.PrintStream flatten_0;
flatten_0 = java.lang.System.out;
flatten_0.println(c);

}
}

}

Figure 5.3: Initial integer constant code (integerConstant expanded from$<1>$

public static Code integerConstant(final int constval) {
return new Code() {

public ClosedCode eval(Environment env) {
return new ClosedCode(Instr.genConst(constval),

env, Type.int_type,
ConstVal.make(constval));

}
};

}

Figure 5.4:integerConstant method being inlined

The one parameter is placed in a generated variable, and a spot is reserved for the return value. The

inlined method is surrounded by extra scopes, including one with a label that catches the break statements

replacing returns. The inner class is not rewritten except where it refers to variables defined outside it, and

to guarantee unique names for variables within it.

The extraneous break at the end of the inlined area is removed with the UnusedBreak rewriter, followed

by the UnusedScope rewriter which can now remove all the new scopes. In figure 5.6, we see the more

reasonable-looking inlined function. The result value ofeval is formed from three newly created values

and the environment being passed unchanged.

We can now start applying other code reducing rewriters. The assigns togen8464_return andc can

be reduced by usinggen8464_flatten_32 directly in the print statement. The constantgen8464_constval

can be propagated into three places. All but two of the variable declarations are now useless and can be re-

moved, leaving the code in figure 5.7.
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Code c;
final int gen8464_constval;
gen8464_constval = 1;
final Code gen8464_return;
gen8464_break: {

{
final Code gen8464_flatten_32;
gen8464_flatten_32 = new Code() {

public ClosedCode eval(Environment env) {
{

final Instr flatten_27;
flatten_27 = Instr.genConst(gen8464_constval);
final Type flatten_28;
flatten_28 = Type.int_type;
final ConstVal flatten_29;
flatten_29 = ConstVal.make(gen8464_constval);
final ClosedCode flatten_30;
flatten_30 = new ClosedCode(flatten_27, env,

flatten_28, flatten_29);
return flatten_30;

}
}

};
{

gen8464_return = gen8464_flatten_32;
break gen8464_break;

}
}

}
c = gen8464_return;
{

final PrintStream flatten_0;
flatten_0 = System.out;
flatten_0.println(c);

}

Figure 5.5: Integer constant code after first inlining

We can now inline the invocation ofgenConst , which determines which of 10 different constant

loading bytecodes to use (see figure 5.8). Since the constant value is known, we can reduce most of it.

12 arithmetic rewrites, 30 constant propagations, 3 removals of constant-valued if statements, and various

cleanup rewrites later theeval method is reduced to figure 5.9. ThegenConst invocation reduced to an

object creation statement that creates bytecode number 4, which has no arguments —iload_1 .

Now only the invocation ofmake remains, which consists of a single object instance creation. This

value will be used if the code is evaluated in a context that can be reduced at compile time, or if assigning

to a final variable. The full code of the program after all rewrites are done is shown in figure 5.10. The code
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Code c;
final int gen8464_constval;
gen8464_constval = 1;
final Code gen8464_return;
final Code gen8464_flatten_32;
gen8464_flatten_32 = new Code() {

public ClosedCode eval(Environment env) {
final Instr flatten_27;
flatten_27 = Instr.genConst( gen8464_constval );
final Type flatten_28;
flatten_28 = Type.int_type;
final ConstVal flatten_29;
flatten_29 = ConstVal.make( gen8464_constval );
final ClosedCode flatten_30;
flatten_30 = new ClosedCode(flatten_27, env, flatten_28, flatten_29);
return flatten_30;

}
};
gen8464_return = gen8464_flatten_32;
c = gen8464_return;
final PrintStream flatten_0;
flatten_0 = System.out;
flatten_0.println( c );

Figure 5.6: The inlined method after extra breaks and scopes are removed.

final Code gen8464_flatten_32;
gen8464_flatten_32 = new Code() {

public ClosedCode eval(Environment env) {
final Instr flatten_27;
flatten_27 = Instr.genConst(1);
final Type flatten_28;
flatten_28 = Type.int_type;
final ConstVal flatten_29;
flatten_29 = ConstVal.make(1);
final ClosedCode flatten_30;
flatten_30 = new ClosedCode( flatten_27 , env, flatten_28, flatten_29);
return flatten_30;

}
};
final PrintStream flatten_0;
flatten_0 = System.out;
flatten_0.println(gen8464_flatten_32);

Figure 5.7: Constant propagation and copy assignment reduction allows more cleanup.
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public static final Instr genConst(int i) {
if (i > -2 && i < 6)

return new NoArg(ICONST_M1+(i+1));
else {

if ((i >= Byte.MIN_VALUE) && (i <= Byte.MAX_VALUE)) {
return new ByteArg(BIPUSH, i);

}
else if ((i >= Short.MIN_VALUE) && (i <= Short.MAX_VALUE)) {

return new ShortArg(SIPUSH, i);
}
else {

Constant c = new ConstantInteger(i);

return new ConstantArg(LDC1_W, c);
}

}
}

Figure 5.8: ThegenConst method being inlined

public ClosedCode eval(Environment env) {
final NoArg gen8465_flatten_4241;
gen8465_flatten_4241 = new NoArg(4);
final Type flatten_28;
flatten_28 = Type.int_type;
final ConstVal flatten_29;
flatten_29 = ConstVal.make(1);
final ClosedCode flatten_30;
flatten_30 = new ClosedCode(gen8465_flatten_4241, env,

flatten_28, flatten_29 );
return flatten_30;

}

Figure 5.9: Theeval method after inlininggenConst and reducing

is being created in the fastest way possible, using three object creations and one field lookup.

5.4.2 Rewriting Dot Product

As an example of rewriting a larger system, we show the essentials of rewriting the DotGen example from

section 4.3.1. Figure 5.11 shows the method we will work on. For simplicity, we have stripped it down to

code that creates a summation of the integers from 0 to 10. After the quotation syntax has been removed,

we get the code seen in figure 5.12. We will again elide the package names and any inessential parts of the

code.

The first line of the method can be reduced analogously to that of the previous section. The interesting
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import uiuc.Jumbo.Util.*;
import uiuc.Jumbo.Jaemus.*;
import uiuc.Jumbo.Compiler.*;

public class IntConst {
public static void main(java.lang.String[] argv) {

final Code gen8464_flatten_32;
gen8464_flatten_32 = new Code() {

public ClosedCode eval(Environment env) {
final NoArg gen8465_flatten_4241;
gen8465_flatten_4241 = new NoArg(4);
final Type flatten_28;
flatten_28 = Type.int_type;
final ConstVal.IntConstVal gen8466_flatten_5862;
gen8466_flatten_5862 = new ConstVal.IntConstVal(1);
final ClosedCode flatten_30;
flatten_30 = new ClosedCode(gen8465_flatten_4241, env,

flatten_28, gen8466_flatten_5862);
return flatten_30;

}
};
final PrintStream flatten_0;
flatten_0 = System.out;
flatten_0.println(gen8464_flatten_32);

}
}

Figure 5.10: The final irreducible code integer constant code.

public class DotGenOrig {
public static Code makeSumCode() {

Code sumcode = $<0>$;
for (int i = 1; i < 10; i++) {

sumcode = $<‘Expr(sumcode) + ‘Int(i)>$;
}
return sumcode;

}
}

Figure 5.11: A code generator for the sum from 1 to 10
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public class DotGenOrig {
public static Code makeSumCode() {

Code sumcode = Constructor.integerConstant(0);
for (int i = 1; i < 10; i++) {

sumcode = Constructor.binOp (Instr.ADD, sumcode,
Constructor.constant(i) );

}
return sumcode;

}
}

Figure 5.12: The code generator of figure 5.11 with quotation expanded

...
final int gen8857_constval = i;
final Code gen8858_flatten_35 = new Code() {

public ClosedCode eval(Environment env) {
return new ClosedCode(Instr.genConst(gen8857_constval),

env, Type.int_type,
new ConstVal.IntConstVal(gen8857_constval));

}
}
...

Figure 5.13: The best possible reduction ofconstant(i) (unflattened)

part is inside the loop, which is where most of the time would be spent in a dot product code generator. If the

rewriting system is powerful enough, both theconstant and thebinOp operations can be significantly

reduced.

First we inline and reduce theconstant(i) invocation. Using the type of the argument to resolve

overloading, it becomes an invocation ofintegerConstant . It inlines and reduces similarly to the

previous section, except that the reduction ofInstr.genConst() is blocked by the fact thati is not

a static constant, but a variable. Thus the selection of the correct bytecode instruction cannot be resolved

statically, and an inlined version would just take up more space in the method. Themake call, however, can

still reduce to an object creation, and we end up with theconstant() invocation being reduced to that of

figure 5.13.

Next we inline the call tobinOp . The method contains a switch on the operator, which immedi-

ately reduces to a call tomathOp(Instr.ADD, sumcode, gen8858_flatten_35) , as seen in

figure 5.14. That method, though, contains the bulk of the arithmetic work. While the other arithmetic

operations are simple, addition in Java is overloaded based on the types of the operands. If either operand
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int i = 1;
while (true) {

if (i<10) {
final Code gen8681_flatten_31;
gen8681_flatten_31 = new Code() {

public ClosedCode eval(Environment env) {
return new ClosedCode(Instr.genConst(i),

env, Type.int_type,
new ConstVal.IntConstVal(i));

}
};
final Code gen8683_c1 = sumcode;
sumcode = Constructor.mathOp (6, gen8683_c1, gen8681_flatten_31);
i++;

} else break;
}

Figure 5.14: The loop after inliningintegerConstant andbinOp

is a string, the addition is really string concatenation. This possibility adds complexity to the method. Fig-

ure 5.15 shows just the inlinedmathOp method after reductions based on the statically known operand have

been applied.

We see that there are two methods involved:eval() merely callsevalInAdd() and handles the

cleanup after a possible string concatenation (converting aStringBuffer into aString ). When eval-

uatingevalInAdd() , we check first to see if both operands are constant, in which case we just make a

new constant. Otherwise, if we are in the middle of a string concatenation (ifcp1 is aStringBuffer ),

we simply turncp2 into a string and append it. However, if either operand turns out to be a string, we must

make string values of them both and concatenate them using aStringBuffer . Finally, if we are not

dealing with strings, we just convert the operands to appropriate primitive types and apply the math operator

to them.

We can now see which conditions we must check to be able to reduce some of the if branches away.

The types and the constant-ness ofcp1 andcp2 are checked, so they are essential targets for reductions.

There is no problem in inliningcp2 , as it is defined just above, and we will be able to tell both its type

(Type.int_type ) and whether it is constant (it is). However, the definition ofcp1 is not unique — it

comes fromsumcode , which can either be defined before the loop or in a previous iteration of the loop.

With the information we know will be available, we can remove only parts of the conditions of the if

statements, but we cannot reduce away any of the if statements themselves.
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...
final Code gen8859_c1 = sumcode;
sumcode = new Code() {

public ClosedCode evalInAdd(Environment env) {
final ClosedCode cp1 = gen8859_c1.evalInAdd(env);
final ClosedCode cp2 = gen8858_flatten_35.eval(env) ;
if (cp1.isConstant() &&cp2.isConstant() ) {

final ConstVal c = cp1.constantValue().mathBinOp(6, cp2.constantValue());
return new ClosedCode(c.genLoadCode(), env, c.getType(), c);

} else {
if (cp1.type.isObjectType("java/lang/StringBuffer")) {

final ClosedCode str2 = Constructor.makeStringValue(cp2);
return new ClosedCode(cp1.bytecode.append(str2.bytecode),

env, cp1.type);
} else {

if (cp1.type.isObjectType("java/lang/String") ||
cp2.type.isObjectType("java/lang/String")) {

final ClosedCode str1 = Constructor.makeStringValue(cp1);
final ClosedCode str2 = Constructor.makeStringValue(cp2);
return new ClosedCode(Instr.genNew("java/lang/StringBuffer")

.addDup(1, 0)

.addInvokenonvirtual("java/lang/StringBuffer",
" ", new MethodType(Type.void_type))

.append(str1.bytecode)

.append(str2.bytecode),
env, Type.stringbuffer_type);

}
}

}
final Type t = cp1.type.lub(cp2.type);
return new ClosedCode(cp1.bytecode.addConvert(cp1.type, t)

.append(cp2.bytecode).addConvert(cp2.type, t)

.addMath(6, t),
env, t);

}
public ClosedCode eval(Environment env) {

final ClosedCode cp = this.evalInAdd(env);
if (cp.type.isObjectType("java/lang/StringBuffer")) {

return new ClosedCode(cp.bytecode
.addInvokevirtual("java/lang/StringBuffer",

"toString", new MethodType(Type.string_type)),
env, Type.string_type);

} else
return cp;

}
}
...

Figure 5.15:mathOp inlined and reduced for static operator ADD (unflattened, surrounding loop code
elided)
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By inlining gen8858_flatten_35.eval() and cp2.isConstant() , we get to the code in

figure 5.16. While we could continue inlining inside the if statements, we know that those parts are not

going to be evaluated, and so inlining them will have little effect except that code growth would make

loading and optimizing slower. Only if we could significantly reduce the overall size of the code would we

improve the way the code gets optimized in the VM.

While some amount of code has been removed due to these rewrites, the method body itself has grown,

adding more work for the run-time compiler. The above code turns out to be about 2% slower than the

original code when run on Sun’s JVM. This is mostly due to the way HotSpot handles large methods.

Running the code on the Kaffe JVM[91] shows a 26% speedup. The Kaffe JVM contains a JIT compiler that

compiles each method’s bytecode before execution. With such a JIT, there is no penalty for large methods,

so the expanded method of figure 5.16 runs significantly faster than the original method invocations.

These two first examples have shown how the rewriting system can be used to perform optimizations,

and what problems we run into when optimizing the combinators. We can inline resolvable method calls,

and reduce a number of different constructs by applying simple rules. However, there are some aspects of

the combinators that make them more difficult to optimize: the environments are blocked by being passed

through method invocations, missing type information hinders a number of reductions, and loops make it

difficult to resolve method calls. These problems should be the subject of future research.

5.4.3 Type Checking

An alternative use of the rewriters is to check whether a piece of quoted code is type safe. The combinators

check for type safety as part of the compilation process, in order to handle type conversion correctly. If

the types do not match, an exception is thrown. If we can reduce the code to where we are certain that an

exception is thrown, we can know at compile time that a type error has occured.

This approach can be tested by reducing an expression like$<-"a">$ , in which we use a simple integer

operator on a string value. After parsing and normalizing, this turns into the code shown in figure 5.17.

The first step would be to inline the call tostringConstant and clean it up, getting the code shown

in figure 5.18. Like theintegerConstant calls shown in the previous sections, this reduces to creation

of a four-tuple, including the type, which is the predefined type for strings. Since we are mainly interested

in the type, we will stop the inlining ofstringConstant here.
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public ClosedCode evalInAdd(Environment env) {
final ClosedCode cp1 = gen8858_c1.evalInAdd(env);
final Instr gen8862_flatten_30 = Instr.genConst(gen8857_constval);
final Type gen8862_flatten_31 = Type.int_type;
final ClosedCode gen8862_flatten_33 =

new ClosedCode(gen8862_flatten_30, env, gen8862_flatten_31,
new ConstVal.IntConstVal(gen8857_constval));

if (cp1.isConstant()) {
final ConstVal c = cp1.constantValue()

.mathBinOp(6, gen8862_flatten_33.constantValue());
return new ClosedCode(c.genLoadCode(), env, c.getType(), c);

} else {
if (cp1.type.isObjectType("java/lang/StringBuffer")) {

final ClosedCode str2 = Constructor.makeStringValue(gen8862_flatten_33);
return new ClosedCode(cp1.bytecode.append(str2.bytecode), env, cp1.type);

} else {
if (cp1.type.isObjectType("java/lang/String") ||

gen8862_flatten_31.isObjectType("java/lang/String")) {
final ClosedCode str1 = Constructor.makeStringValue(cp1);
final ClosedCode str2 = Constructor.makeStringValue(gen8862_flatten_33);
return new ClosedCode(Instr.genNew("java/lang/StringBuffer")

.addDup(1, 0)

.addInvokenonvirtual("java/lang/StringBuffer", " ",
new MethodType(Type.void_type))

.append(str1.bytecode).append(str2.bytecode),
env, Type.stringbuffer_type);

}
}

}
final Type t = cp1.type.lub(gen8862_flatten_31);
return new ClosedCode(cp1.bytecode.addConvert(cp1.type, t)

.append(gen8862_flatten_30)

.addConvert(gen8862_flatten_31, t)

.addMath(6, t), env, t);
}
public ClosedCode eval(Environment env) {

final ClosedCode cp = this.evalInAdd(env);
if (cp.type.isObjectType("java/lang/StringBuffer")) {

return new ClosedCode(cp.bytecode
.addInvokevirtual("java/lang/StringBuffer", "toString",

new MethodType(Type.string_type)),
env, Type.string_type);

} else
return cp;

}

Figure 5.16: After inliningeval() andisConstant() calls, further reductions are pointless.
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Code c;
final Code flatten_0;
flatten_0 = Constructor.stringConstant("a") ;
c = Constructor.negate(flatten_0);

Figure 5.17: Code for the illegally-typed expression$<-"a">$

Code c;
final Code gen8466_flatten_101;
gen8466_flatten_101 = new Code() {

public ClosedCode eval(Environment env) {
final uiuc.Jumbo.Jaemus.Instr flatten_95;
flatten_95 = uiuc.Jumbo.Jaemus.Instr.genConst("a");
final uiuc.Jumbo.Jaemus.Type flatten_96;
flatten_96 = uiuc.Jumbo.Jaemus.Type.string_type;
final ConstVal flatten_97;
flatten_97 = ConstVal.make("a");
final ClosedCode flatten_98;
flatten_98 = new ClosedCode(flatten_95, env, flatten_96, flatten_97);
return flatten_98;

}
};
c = Constructor.negate(gen8466_flatten_101) ;

Figure 5.18: The code of figure 5.17 afterstringConstant has been inlined

Next, we inline the call tonegate and clean that up, getting the code shown in figure 5.19. This

shows the exception we are looking for, which gets thrown if the operand is not numeric. Not shown is the

code that actually creates the code. The variable guarding the if with the throw isflatten_163 , which

is derived from the call toflatten_161.isNumeric() . flatten_161 , in turn, derives from the

call to gen8466_flatten_101.eval() . Since that is a call on a known object, we can perform the

inlining of eval .

Inlining eval and cleaning up gives us the code in figure 5.20. The body of the string-generating object

is completely inlined, and the type is now directly used in the call tois_numeric . TheClosedCode

object cannot be reduced yet, as it is used in parts further down.

The isNumeric method simply returns false when given a string type, so in figure 5.21 we see that

flatten_163 became true, and the true-branch of the if is now on the main flow path. Since the method

now always reaches a throw statement, we can conclude that there is a compilation error.

This can in principle be extended to find any compilation error statically, but is in practice limited by

two factors: Fragmentation and complexity. Any occurrence of an antiquote in a code fragment will be
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Code c;
final Code gen8466_flatten_101;
gen8466_flatten_101 = new Code() {...};
final Code gen8465_flatten_176;
gen8465_flatten_176 = new Code() {

public ClosedCode eval(Environment env) {
final ClosedCode c1;
c1 = gen8466_flatten_101.eval(env) ;
final uiuc.Jumbo.Jaemus.Type flatten_161;
flatten_161 = c1.type;
final boolean flatten_162;
flatten_162 = flatten_161.isNumeric();
final boolean flatten_163;
flatten_163 = !flatten_162;
if (flatten_163) {

final uiuc.Jumbo.Jaemus.Type flatten_158;
flatten_158 = c1.type;
final java.lang.String flatten_159;
flatten_159 = ("Negating non-numeric type "+flatten_158);
final java.lang.Error flatten_160;
flatten_160 = Constructor.error(flatten_159, env);
throw flatten_160;

}
...

}
};
c = gen8465_flatten_176;

Figure 5.19: The code of figure 5.18 afternegate has been inlined (some parts elided)

impossible to check fully. A few antiquotes, namely those that lift constant values, can be checked, but the

majority found in actual use, namely names, expressions and statements, give no useful information for this

kind of correctness checker.

Similarly, use of non-hygienic variables and accesses of new fields, methods and classes can make it

impossible to find the type of an expression, thus making rewriter-based correctness checking less likely to

work.

Even if the appropriate types are available for correctness checking, there remains the problem of

whether these type checks are feasible for more complex code. As can be seen in these examples, the

inlining process can cause significant growth in code size. The final code size does not matter for correct-

ness checks, as the expanded code will be discarded once checking is finished. However, large intermediate

results may strain the time and memory constraints, making correctness checks only applicable for small

code fragments.
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...
Environment gen8467_env;
gen8467_env = env;
final uiuc.Jumbo.Jaemus.Instr gen8467_flatten_95;
gen8467_flatten_95 = uiuc.Jumbo.Jaemus.Instr.genConst("a");
final uiuc.Jumbo.Jaemus.Type gen8467_flatten_96;
gen8467_flatten_96 = uiuc.Jumbo.Jaemus.Type.string_type;
final ConstVal gen8467_flatten_97;
gen8467_flatten_97 = ConstVal.make("a");
final ClosedCode gen8467_flatten_98;
gen8467_flatten_98 = new ClosedCode(gen8467_flatten_95, gen8467_env,

gen8467_flatten_96, gen8467_flatten_97);

final boolean flatten_162;
flatten_162 = gen8467_flatten_96.isNumeric() ;
final boolean flatten_163;
flatten_163 = !flatten_162;
if (flatten_163) {

final java.lang.String flatten_159;
flatten_159 = ("Negating non-numeric type "+gen8467_flatten_96);
final java.lang.Error flatten_160;
flatten_160 = Constructor.error(flatten_159, env);
throw flatten_160;

}
...

Figure 5.20: The code of figure 5.19 aftereval has been inlined (some parts elided)

...
uiuc.Jumbo.Jaemus.Instr.genConst("a");
final uiuc.Jumbo.Jaemus.Type gen8467_flatten_96;
gen8467_flatten_96 = uiuc.Jumbo.Jaemus.Type.string_type;
ConstVal.make("a");
final java.lang.String flatten_159;
flatten_159 = ("Negating non-numeric type "+gen8467_flatten_96);
final java.lang.Error flatten_160;
flatten_160 = Constructor.error(flatten_159, env);
throw flatten_160 ;
...

Figure 5.21: The code of figure 5.20 afterisNumeric has been inlined (some parts elided)
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The AST part of the Jumbo parser can determine the type of any expression, and could be made to check

if there are type errors in the code. However, using that approach would require building an additional

system. The rewriters, because of the structure of the compiler, can be made to do typechecking with a

minimal amount of effort.

5.5 Conclusion

In order to make code generation applicable in more situations, we need to lower the cross-over point. This

can be done either by generating better code or by generating the code faster. Optimizing the generated code

is limited by time constraints, and it is difficult to optimize normal Java code anyway. Instead it seems more

promising to try to optimize the code generation step.

We have considered several different ways to speed up code generation. We could try to use a partial

evaluator, but none is available that can handle the combinators. We could try to make the static portions of

the quoted faster through abstract evaluation. However, abstract evaluation seems likely to be blocked by

holes in the code. Instead, we have chosen to implement a source rewriting system that can take advantage

of the regular style of the combinators to perform structural specialization.

In this section, we have shown how our rewriting system can be applied for both optimizating and type

checking. The idea of using inlining and simple rewrite rules has been shown to work, though structural

obstacles limit applicability. Significant optimizations were not achieved on the HotSpot JVM, but with the

Kaffe JVM, a speedup of 26% was achieved for code generation of a simple unrolling of a loop.

The main roadblocks of further reductions are lack of type information, loss of environment information,

and the inability to inline ambiguously defined methods. Types of holes and irreducible combinators limit

what reductions can be done based on type information. Similarly, environment information is lost if we

cannot tell when an environment is passed through a combinator unchanged. In both cases, future research

may make it possible to analyse the combinators to deduce this information. Ambiguously defined methods,

i.e., methods invoked on a variable whose value may come from several places, could also be the subject of

future research. It should be possible to inline the method when the exact class or method definition can be

determined.

The idea of exploiting the compositional nature of the Jumbo compiler to optimize the code generators

has shown to be viable. Because the code fragments are stored in a way that carries meaning, a general-
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purpose optimizer can statically optimize the code generation of the separate code fragments. In the next

chapter, we give details on implementation of the rewriting system.

85



Chapter 6

The Rewriting System

6.1 Introduction

As explained in the previous chapter, we have focused on optimizing the code generators, as it seems to be

the approach most likely to lower the break-even point for code generation. In this chapter we present the

source-to-source rewriting system we have developed to optimize the code generators. The rewriting is based

on a normalization process and a set of analyses, as described in sections 6.2 and 6.3. The normalization is

performed by a set of rewrite rules called normalizers, which do not depend on the analyses, but massage the

code into a simpler form. The analyses provide use-def information for variables and fields, which in turn

allow us to perform inlining, loop unrolling, and a number of code reducing rewrite rules, as described in

sections 6.4, 6.5, and 6.6. Section 6.7 describes how to use the rewriting system. In section 6.8, we examine

the effect of the rewriting system and its limitations, which point the way to further research.

In a rewriting system[71, 20], a series of rewrite rules (“rewriters”) are applied to some structured data,

each changing the structure slightly when applicable. By repeated application, the structure is transformed

into the desired state. If the rewriters are all known to make some progress towards the desired goal when

applied, they can be automatically applied until no rewriter applies. The progress requirement implies that

the rewriters do not perform the identity transformation, that they cannot undo each other, and that no set of

rules can be applied indefinitely. The first two implications are easy to verify. The requirement of finiteness

is equivalent to showing that a program halts. However, if we can show that some measure of the size of the

data does not grow (or cannot grow without bound), there is necessarily a limit to the number of application

that can be performed. Note that rewriters that are not applied automatically, or are not applied repeatedly,

do not need to make progress.
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For each rewriter, including the normalizers, we present a formalized description of its actions. A rule

description of the form

Algebraic [[BINARY(e1, o, e2)]] ⇒ e2

if e1 = L ITERAL(0),

o = “plus”

reads: Rewriter “Algebraic” transforms “binary” nodes in the AST containing the two subexpressionse1

ande2 and operando to e2 if e1 is the literal 0 and the operando is the “plus” operand. A rewriter may be

described by several rules. If more than one rule can apply to a node, the first rule is picked.

Except where otherwise indicated, metavariables are of the following types:

n ∈ AST Nodes

e ∈ AST Expressions, i.e. nodes with a type

v ∈ AST Expressions representing local variables

f ∈ Field names

c ∈ Classes or class names

a ∈ AST Expressions representing method invocation arguments

p ∈ Method parameters

s ∈ Statements

m ∈ Methods

t ∈ Types

The Cons operator that prepends an item to a list is denoted::, while a single colona : t is used to

indicate thata is of typet. We will omit the LITERAL() marking when it can be inferred from context.

The following functions are used throughout the formal descriptions. The Defs and Uses functions use

information provided by the use-def analysis. The Target function uses information provided by the flow

analysis. These three functions are not available to the normalizers, which operate independently of the
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analyses. The remaining functions are handled by examining the AST, and do not require the analyses.

Except for TypeOf, the functions return AST nodes or collections of AST nodes.

Node Decl(v) = the declaration of a variable (a VarDecl or Parameter node).

Set Defs(v) = the set of definitions of a variable, i.e. assignment, method parameter or increment expres-

sion nodes. When applied to a specific use of a variable, the set of definitions that may reach the

use.

Set Uses(v) = the set of uses of a variable, i.e. Var nodes. When applied to a specific definition of a

variable, the set of uses that may be reached by that definition.

Node Target(s) = the target of a break or continue statement, i.e. either a labeled statement list, a while

statement or a break statement.

Set Statements(m) = the set of all statement nodes in a method, including sub-statements.

List Parents(n) = the list of ancestors of a node in the AST.

List Constructors(c, a1, . . . , an) = the list of constructors that may be invoked by a constructor callnew

c( a1, . . . , an) , i.e., the constructor invoked, the constructor it in turn invokes, up to the constructor

for Object .

Type TypeOf(e) = the result type ofe, in particular the return type of methods.

While the notation{e1, . . . , en} represents a set,[e1, . . . , en] represents an ordered list, possibly with

duplicates. The rewriters will be distinguished from auxiliary functions by their arguments being surrounded

by [[double square brackets]]. Nodes in the AST are indicated by the use of small caps. For instance, the

(fictitious) rewriter shown below removes assignments that are being immediately overwritten, but only if

the expression being removed is some literal.

Overwritten [[STATEMENTS(s1, . . . , sn, ASSIGNMENT(v, e1), ASSIGNMENT(v, e2), sn+1, . . . , sm)]] ⇒

STATEMENTS(s1, . . . , sn, ASSIGNMENT(v, e2), sn+1, . . . , sm)

if e1 = L ITERAL(_)

The AST nodes whose meaning or arguments are not straightforward are described below. Note that for

legibility, some of the names here are shorter than those used in the code.
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ANONYMOUSCLASS(cs, a1, . . . , an, b): An anonymous class creation expression, withcs being the super

class andb the body. In Java:new cs(a1, . . . , an) { b } .

CLASS(c, cs, b): A non-anonymous class definition, withcs being the super class andb the body. In Java:

class c extends cs { b } .

CONSTRUCTOR(p1, . . . , pn, s, b): A constructor declaration with parametersp1, . . . , pn, explicit super

constructor calls, and bodyb.

EXPRESSIONSTATEMENT(e): An expression at statement level. The only expressions allowed inside

EXPRESSIONSTATEMENT() are assignments, method invocations, object constructions and incre-

ment/decrement expressions.

FIELDACCESS(t, f ): An access to a fieldf on the target objectt. t may be a string constant, a object-valued

expression, orε to indicate thethis object.

FQCN(n1, . . . , nk): A fully qualified class name, i.e. a dotted listn1. · · · .nk that resolves to a class name.

These are created by the FQCN normalizer. Can also be FQCN(c) to indicate the fully qualified name

of the given class.

LABEL(l, s): A statements with labell.

L ITERAL(): Any simple constant. In many cases, we leave out the AST indicator when talking about a

specific constant, e.g. ASSIGN(v, 0) assigns the integer literal 0 tov.

METHODINVOCATION(et,m, a1, . . . , an): An invocation of methodm on targetet with argumentsa1, . . . , an.

t may be a string constant, a object-valued expression, orε to indicate thethis object.

NEWOBJECT(c, a1, . . . , an): An object creation expressionnew c( a1, . . . , an) .

QUALIFIED NAME(n1, . . . , nk): A dotted listn1. · · ·. nk that cannot be a class name only, i.e. it must be a

simple variable or a field lookup.

QUALIFIED NAMEORCLASS(): A dotted listn1. · · ·. nk that may be a class name. It is a subclass of

QUALIFIED NAME(), that can only occur as the target of a FIELDACCESS() or METHODINVOCA-

TION().
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SCOPEDSTATEMENTS(s1, . . . , sn): A list of statements that defines a scope. Variables defined inside the

scope are not visible outside.

STATEMENTS(s1, . . . , sn): A list of statements that does not define a scope.

SWITCHCASE(e1, . . . , en, s): A part of a switch statement containing severalcase ei: labels (labels in

Java are compile-time constant expressions) and one statement.

THIS(c): A this expression. THIS() is the unqualifiedthis , THIS(c) is a qualifiedc.this as used in

inner classes to refer to outer classes.

UNARY(o, e): A unary expression, witho being the operator.

VARDECL((t1, v1, e1), . . . , (tn, vn, en)): A local variable declaration statement with several variables be-

ing defined and optionally initialized. After flattening (described below), only one variable is defined

per VARDECL(), and with no initializer.

6.2 Normalizing

Java has a number of syntactic shortcuts that allow for a less cumbersome programming style. Thus, there are

sometimes several distinct ways to write the same thing. While such redundancy is good for the programmer,

it makes it harder to analyze the code. A simple predicate such as “is statementA the same as statement

B?” becomes harder to answer correctly. Figure 6.1 shows an example of how the same expression can take

different forms. This section describes thenormalizationprocess that we apply to all loaded code in order

to simplify the rewriters.

Normalization is achieved by means of applying a set ofnormalizers, rewriters that transform the code

into a normal form. This normal form is not “strong” in the sense that two different expressions in normal

form must represent different calculations, but it allows simpler assumptions for the rewriters and decodes

some of the more complex parts of Java. Note that the normalizers are only applied once to each node, so

they need not make progress in the sense described in section 6.1. In particular, some of the normalizers

allow the identity transformation or increase the size of the code.

The normal form created by the normalizers has the following characteristics:

1. All class names are fully expanded with their package name and outer class names.
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package Even.More;
class Redundant {

static int staticmethod() { return 42; }
void redundancies() {

staticmethod();
this.staticmethod();
Redundant.staticmethod();
Redundant.this.staticmethod();
Even.More.Redundant.staticmethod();
Even.More.Redundant.this.staticmethod();

}
}

Figure 6.1: Six different ways to make the exact same method invocation.

2. All QualifiedNameExpression nodes (dotted lists) are either simple variables or fully qualified class

names, not field accesses. Variables and fully qualified class names are represented as subclasses of

QualifiedNameExpression, while field accesses are explicitly represented with FieldAccess nodes.

3. All field lookups and method invocations have an explicit target.

4. No this expression referring to the innermost class is qualified with a class name. Allthis expres-

sions referring to non-innermost classes are qualified with a fully qualified class name.

5. No do- or for-loops exist.

6. No expression contains a subexpression that is not a fully qualified name, a literal, a variable, or a

this -expression. The two exceptions are that assignment expressions may contain any expression as

either their left-hand side or their right-hand side, but not on both sides, and that the target of a field

access or method invocation may be an anonymous class creation expression.

7. No statement other than ExpressionStatement directly contains expressions other than literals, vari-

ables orthis -expressions.

8. No variable declaration declares more than one variable.

9. No variable declaration contains initializers.

The this -expressions are kept inside expressions by the flattener because anonymous inner classes do

not have a name for their type. Thus assigning an anonymousthis would coerce its type to that of the

superclass, removing access to new fields or methods declared in the anonymous class.
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In order to reduce the complexity of the later normalizers, we assume that any classes referenced are

at least normalized up to the previous step of normalization. To enforce this invariant in the presence of

circular references, we use a pipeline of classes being normalized. At the start of the pipeline, classes are

loaded from source files. At the end, the fully normalized classes are cached in a class table for later lookup.

As invariants, the pipeline is empty whenever a method outside the normalizers asks for a class, and the

previous steps of the pipeline are empty when we perform any normalization rewriting.

Before starting to normalize a class, we know that no previous steps have classes that need to be normal-

ized. Whenever during normalization we refer to a class that is not already loaded, we load the corresponding

source file and insert any classes in it into the start of the pipeline. We then call the normalizers recursively

for the steps of the pipeline prior to the current one. Once that call returns, the pipeline before the current

step is empty, and all classes are normalized at least up to the current step.

Some files, notably the standardjava.lang files, are not available as source, and thus cannot be

normalized. Instead, we wrap these files in a thin object that implements a common lookup interface, and

move them directly from the loader into the class table. Since no source is available, the flattening and

syntactic sugar normalizers are irrelevant. Additionally, class names are always fully qualified in class files

and so do not need to be expanded. Compiled classes are necessary for determining the types and flags

of methods and fields, but cannot be used for inlining. Decompiling compiled classes to allow inlining is

outside the scope of this project; the interested reader can use any of a number of available decompilers to

obtain source if so desired.

6.2.1 FQCN

One of the most complex parts of parsing Java isfully qualified class names(FQCNs) and their resemblance

to field lookup. A dotted list of (one or more) identifiers can be either a local variable optionally followed

by field lookups, a series of field lookups, or a class name (with or without its package) optionally followed

by field lookups. Since package names and inner class names are separated by dots as well, the dotted list

cannot be properly understood until we can perform class lookup to find fields. Finding fields in turn is

complicated by the requirement to find fields in superclasses and in outer classes, and by the fact that inner

fields can shadow outer local variables. The parser, not having access to superclasses, has no way to discern

the various meanings of a dotted list.
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To avoid this complication while doing complex rewritings of the code, the first normalizer decodes

dotted lists into field lookups. To do this, we must first check if the first part of the dotted list is a variable or

field, in this or enclosing classes. If not, it must be a class name or part thereof, possibly followed by some

field lookups. If the dotted list occurs before a method call, the entire dotted list may be a class name (the

dotted list is then known in the AST as a QualifiedNameOrClass), otherwise it must at least end in a field

lookup (known in the AST as a QualifiedName)1.

The FQCN normalizer, once it has decoded the dotted list, transforms it into a fully qualified class name,

a variable name or athis expression, possibly followed by a series of field lookups. This satisfies parts 1,

2, and 3 of the requirements for the normal form. Additionally, the FQCN normalizer resolves THIS() nodes

to satisfy 4.

The FQCN normalizer can be described by the following helper functions and rules:

isField(n, e) = false, ifn is a local variable or parameter in the method containinge

true, if n is a field of the class containinge or any of its superclasses

isField(n, e′), if the (anonymous) class containinge is within the expressione′

false otherwise

isVariable(n, e) = true, if n is a local variable or parameter in the method containinge

false, ifn is a field of the class containinge or any of its superclasses

isVariable(n, e′), if the (anonymous) class containinge is within the expressione′

false otherwise

FQCN [[e]] ⇒ FIELDACCESS(. . . FIELDACCESS(VARIABLE(n1), n2), . . . ni)

if e ∈ {QUALIFIED NAME(n1, . . . , ni), QUALIFIED NAMEORCLASS(n1, . . . , ni)},

isVariable(n1, e)

FQCN [[e]] ⇒ FIELDACCESS(. . . FIELDACCESS(THIS(), n1) . . . , ni)

if e ∈ {QUALIFIED NAME(n1, . . . , ni), QUALIFIED NAMEORCLASS(n1, . . . , ni)},

isField(n1, e),

n1 is defined in the innermost class

1Since the parser cannot determine what part of a dotted list is a field lookup, a dotted list cannot possibly occur as the target of
a field lookup until after this normalizer is finished.
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FQCN [[e]] ⇒ FIELDACCESS(. . . FIELDACCESS(THIS(c), n1) . . . , ni)

if e ∈ {QUALIFIED NAME(n1, . . . , ni), QUALIFIED NAMEORCLASS(n1, . . . , ni)},

isField(n1, e),

n1 is defined in the outer classc

FQCN [[e]] ⇒ FIELDACCESS(. . . FIELDACCESS(FQCN(n1, . . . , nk), nk+1) . . . , ni)

if e ∈ {QUALIFIED NAME(n1, . . . , ni), QUALIFIED NAMEORCLASS(n1, . . . , ni)},

¬isVariable(n1, e),

¬isField(n1, e),

k < i,

nk+1 is a static field of the class designated byn1. · · · .nk∧

∀j < k : nj+1 is not a static field of the class designated byn1. · · · .nj

FQCN [[e]] ⇒ FQCN(n1, . . . , ni)

if e = QUALIFIED NAMEORCLASS(n1, . . . , ni),

¬isVariable(n1, e),

¬isField(n1, e),

∀j < i : nj+1 is not a static field on the class designated byn1. · · · .nj

FQCN [[THIS(c)]] ⇒ THIS()

if c is the directly enclosing class

For the purpose of the remaining parts of the FQCN rewriter, we let TARGETABLE(t, X) mean either

FIELDACCESS(t, X) or METHODINVOCATION(t, X), whereX is respectively a field name or a method

name and arguments.

FQCN [[TARGETABLE(t ∈ {ε, THIS()}, X)]] ⇒ TARGETABLE(FQCN(c), X)

if c is the innermost class definingX,

X is statically defined onc

FQCN [[TARGETABLE(t ∈ {QUALIFIED NAME(c), THIS(c)}, X)]] ⇒ TARGETABLE(FQCN(c′), X)

if c′ is the innermost class not insidec (but possibly including) definingX,

X is statically defined onc′
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FQCN [[TARGETABLE(t ∈ {ε}, X)]] ⇒ TARGETABLE(THIS(), X)

if X is non-statically defined on the directly enclosing class

FQCN [[TARGETABLE(t ∈ {ε, THIS()}, X)]] ⇒ TARGETABLE(THIS(c), X)

if c is the innermost class definingX,

X is non-statically defined onc, andc is not the innermost class enclosingX

FQCN [[TARGETABLE(THIS(c), X)]] ⇒ TARGETABLE(THIS(c′), X)

if c′ is the innermost class not insidec definingX,

X is non-statically defined onc′

package FQCN;
public class FQCNTest {

int x;
static int y;
int getSum() {

return x+y;
}
public static void

main(String[] argv) {
FQCNTest t = new FQCNTest();
System.out.println(t.getSum());

}
}

(a) Code before FQCN rewriting

package FQCN;
public class FQCNTest {

int x;
static int y;
int getSum() {

return this.x+FQCN.FQCNTest.y;
}
public static void

main(java.lang.String[] argv) {
FQCN.FQCNTest t =

new FQCN.FQCNTest();
java.lang.System.

out.println(t.getSum());
}

}

(b) Code after FQCN rewriting.

Figure 6.2: The effect of FQCN rewriting.

Figure 6.2 shows some of the transformations the FQCN rewriter performs: Package names, static targets

andthis invocations are made explicit.

6.2.2 ForWhile and DoWhile

To reduce the number of cases being handled by other rewriters, these two rewriters transform for-loops and

do-loops into while-loops. The transformation of do-loops creates a copy of the body of the loop, but we do

not consider this copying a severe problem. Since the original and copied body are in separate scopes, the
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variables do not clash. These normalizers satisfy requirement 5 for the normal form. Figure 6.3 shows an

example of the transformation performed by the DoWhile rewriter.

ForWhile [[FOR(si, et, su, sb)]] ⇒ SCOPEDSTATEMENTS(si, WHILE(et, STATEMENTS(sb, su)))

DoWhile [[DO(sb, et)]] ⇒ STATEMENTS(SCOPEDSTATEMENTS(sb), WHILE(et, sb))

public class DoWhile {
int sumTo(int x) {

int sum = 0;
do {

sum += x;
x--;

} while (x > 0);
return sum;

}
}

(a) Code before DoWhile normalization

public class DoWhile {
int sumTo(int x) {

int sum = 0;
{

sum += x;
x--;

}
while (x>0) {

sum += x;
x--;

}
return sum;

}
}

(b) Code after DoWhile normalization

Figure 6.3: The effects of DoWhile normalization

6.2.3 Flattening

The flattening rewriter performs two main actions: It extracts complex expressions from statements like

if andthrow , replacing them with variable accesses, and it breaks complex expressions in assignments

and method invocations into smaller expressions in a similar way. Taking expressions out of statements is

simple, except for the test expression in thewhile statement, which must be evaluated inside the loop.

Rather than placing the flattened while test in front of thewhile statement, we move it inside and test it to

see if we should break out of the loop.

Breaking complex expressions into simple expressions requires assigning the value of each subexpres-

sion to a temporary variable. In order to do this, we must be able to find the types of the subexpressions.

Three kinds of expressions cannot be fully flattened out: literals (since the “null” literal has no proper type),

“this” expressions (since it has no named type inside anonymous classes), and anonymous classes being used
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as targets of method invocations or field lookups (since anonymous classes have no named type)2. There-

fore, those expressions are left in place. Variables, while technically expressions themselves, are needed as

part of the flattened expressions, and so are left in place as well. For the remaining expressions, we assign

their value to a newly generated variable of the appropriate type and replace the expression with a reference

to that variable.

First we define some helper functions. NeedFlatten checks whether a given expression needs to be flat-

tened. Flatten1 performs the actual flattening of one expression, if necessary. It declares a fresh variable and

assigns the value of the recursively flattened expression to the variable. The declarations and assignments

are stored in a STATEMENTS() being passed along, and the expression returned is a lookup of the fresh vari-

able. FlattenExpr flattens all subexpressions in an expression, again storing new statements in a statement

list passed along. In particular, FlattenExpr replaces the conditional (?: ) expression with an if statement.

This normalizer satisfies requirement 6 for the normal form.

NeedFlatten(e) = false, if e ∈ {FQCN(_), VAR(_), THIS(_), L ITERAL(_)}

true otherwise

Flatten1(e, s) =

(v, s′ :: [VARDECL(t, v), ASSIGN(v, e′)]), if NeedFlatten(e) ∧ (e′, s′) = FlattenExpr(e, s)∧

t = TypeOf(e) ∧ v is fresh.

(e, s) otherwise

FlattenExpr(CONDITIONAL(e1, e2, e3), s) = (v, s′′)

if t = TypeOf(e2) t TypeOf(e3),

v is fresh,

(e′1, s
′) = Flatten1(e1, s),

(e′2, s2) = Flatten1(e2, []),

(e′3, s3) = Flatten1(e3, []),

s′′ = s′ :: [VARDECL(t, v), IF(e′1, s2 :: [ASSIGN(v, e′2)] , s3 :: [ASSIGN(v, e′3)])]

2An anonymous class used in other than method invocations or field lookups do not need any other type than that of its superclass,
as fields and methods not present in its (named) superclass can only be accessed directly after creation.
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FlattenExpr(FIELDACCESS(ANONYMOUSCLASS(c, a1, . . . , an), f)) =

sn :: [FIELDACCESS(ANONYMOUSCLASS(c, a′1, . . . , a
′
n), f)]

if (a′1, s1) = Flatten1(a1, []),

(a′2, s2) = Flatten1(a2, s1),

. . .

(a′n, sn) = Flatten1(an, sn−1)

FlattenExpr(METHODINVOCATION(ANONYMOUSCLASS(c, a1, . . . , an),m, A1, . . . , Ak)) =

sn+k :: [METHODINVOCATION(ANONYMOUSCLASS(c, a′1, . . . , a
′
n),m, A′

1, . . . , A
′
k)]

if (a′1, s1) = Flatten1(a1, []),

(a′2, s2) = Flatten1(a2, s1),

. . .

(a′n, sn) = Flatten1(an, sn−1),

(A′
1, sn+1) = Flatten1(A1, sn),

. . .

(A′
n, sn+k) = Flatten1(An, sn+k−1)

For any other expression (EXPRESSIONx(e1, . . . , en)), we simply flatten any subexpressions.

FlattenExpr(EXPRESSIONx(e1, . . . , en), s) = (EXPRESSIONx(e′1, . . . , e
′
n), s′n)

if (e′1, s
′
1) = Flatten1(e1, s),

(e′2, s
′
2) = Flatten1(e2, s

′
1),

. . .

(e′n, s′n) = Flatten1(en, s′n−1)

Now that we can flatten expressions, we merely need to pick those statements that directly contain

expressions and flatten those expressions. Statements within statements (such as statement lists inside if

statements) are found by the AST traversal and need not be flattened. We have the distinction between

statement-level traversal and expression traversal in order to ensure that new statements created by flattening

an expression are placed immediately before the expression.

All new variables created as part of the flattening process are declared final. Final variables are easier to

reason about, as they cannot change their values.
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The first part of the flattener fulfills requirements 8 and 9 for the normal form by splitting variable

declarations into one declaration per variable and putting any initial assignment into a separate statement.

Flattening [[VARDECL((t1, v1, e1), . . . , (tn, vn, en))]] ⇒ s

if (e′1, s
′
1) = FlattenExpr(e1, []),

s1 = s′1 :: [VARDECL(t1, v1, null), ASSIGN(v1, e
′
1)] ,

...

(e′n, s′n) = FlattenExpr(en, []),

sn = [VARDECL(tn, vn, null), ASSIGN(vn, e′n)] ,

s = [s1, . . . , sn]

A while loop is flattened into an always-true loop whose body starts by calculating the value of the

test. If the test fails, a break exits the loop. Placing the test inside the loop ensures that the flattened test

expression is evaluated at each iteration.

Flattening [[WHILE(e, s)]] ⇒ WHILE(true, s′′)

if (e′, s′) = Flatten(e, []),

s′′ = s′ :: [IF(e′, s, BREAK())]

Flattening [[IF(e, st, sf )]] ⇒ s′ :: [IF(e′, st, sf )]

if (e′, s′) = Flatten1(e, [])

Flattening [[RETURN(e)]] ⇒ s :: [RETURN(e′)]

if (e′, s) = Flatten1(e, [])

Flattening [[THROW(e)]] ⇒ s :: [THROW(e′)]

if (e′, s) = Flatten1(e, [])

Flattening [[SYNCHRONIZED(e)]] ⇒ s :: [SYNCHRONIZED(e′)]

if (e′, s) = Flatten1(e, [])
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The case labels in a switch statement must all be compile-time constant expressions. However, they may

still be complicated expressions that require flattening.

FlattenSwitchCase(SWITCHCASE(e1, . . . , en, scase), s) = (SWITCHCASE(e′1, . . . , e
′
n, scase), sn),

where (e′1, s1) = Flatten1(e1, s),

. . . ,

(e′n, sn) = Flatten1(en, sn−1)

Flattening [[SWITCH(e, c1 : SWITCHCASE(_), . . . , cn : SWITCHCASE(_), cdefault : SWITCHCASE(_))]] ⇒

sdefault ::
[
SWITCH(e′, c′1, . . . , c

′
n, c′default)

]
if (e′, s) = Flatten1(e, []),

(c′1, s1) = FlattenSwitchCase(c1, s),

. . . ,

(c′n, sn) = FlattenSwitchCase(c1, sn−1),

(c′default, sdefault) = FlattenSwitchCase(c1, sn),

Assigns are handled in two different ways depending on what is on the left-hand side. If it is a field access

or an array access, we flatten the left-hand side down to just the field access or array access, and the right-

hand side down to a variable, literal orthis expression. Otherwise, the left-hand side is a simple variable,

and we flatten the right-hand side down to an expression with no subexpressions. After this flattening, there

is only one expression inside each assignment.

Additionally, the operator-assign constructs (+=, *= , etc.) are transformed into normal assignments.

Since the left-hand side of the assignment is flattened down to no more than a field or array lookup, there

are no extra side-effects due to this, and the field or array lookup would have to be done twice anyway.

FlattenOpAssign(e1, ” = ”, e2) = ASSIGN(e1, ” = ”, e2)

FlattenOpAssign(e1, o, e2) = ASSIGN(e1, ” = ”, BINARY(e1, o, e2))
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Flattening [[EXPRESSIONSTATEMENT(ASSIGN(e1, o : Operator, e2))]] ⇒

s′ :: [EXPRESSIONSTATEMENT(FlattenOpAssign(e′1, o, e
′
2))]

if e1 = FIELDACCESS(ef , _),

NeedFlatten(ef ),

(e′2, s) = Flatten1(e2, []),

(e′1, s
′) = FlattenExpr(e1, s)

Flattening [[EXPRESSIONSTATEMENT(ASSIGN(e1, o : Operator, e2))]] ⇒

s′ :: [EXPRESSIONSTATEMENT(FlattenOpAssign(e′1, o, e
′
2))]

if e1 = ARRAYACCESS(ea, ei),

NeedFlatten(ea) ∨ NeedFlatten(ei),

(e′2, s) = Flatten1(e2, []),

(e′1, s
′) = FlattenExpr(e1, s)

Flattening [[EXPRESSIONSTATEMENT(ASSIGN(e1, o : Operator, e2))]] ⇒

s :: [EXPRESSIONSTATEMENT(FlattenOpAssign(e1, o, e
′
2))]

if (e′2, s) = Flatten1(e2, [])

The only other permissible expressions at statement level are method invocations and increment/decre-

ment expressions. These are flattened down to expressions with no subexpressions. By now, all statements

are flattened to satisfy requirement 7 for the normal form.

Flattening [[EXPRESSIONSTATEMENT(e)]] ⇒

s :: [EXPRESSIONSTATEMENT(e′)]

if (e′, s) = FlattenExpr(e, [])

Figure 6.4 shows an example of the effect of the Flattening normalizer. Flattening obviously creates an

inordinate number of new temporary variables. These variables would be easily removed by an optimizing

compiler, but few Java compilers expect such code, and so just pass it on to the JVM. The JVM in turn may

or may not be able to optimize this, though again it is not a style expected by the JVM implementors, so it

may not be handled optimally.
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public class Point {
double x,y;
final double hDist(Point p) {

return p.x-x;
}
boolean isLeftOf(Point p) {

return hDist(p) > 0;
}

}

(a) Original method and invocation

public class Point {
double x;
double y;
final double hDist(Point p) {

{
final double flatten_0;
flatten_0 = p.x;
final double flatten_1;
flatten_1 = this.x;
final double flatten_2;
flatten_2 = (flatten_0-flatten_1);
return flatten_2;

}
}
boolean isLeftOf(Point p) {

{
final double flatten_3;
flatten_3 = hDist(p);
final boolean flatten_4;
flatten_4 = (flatten_3>0);
return flatten_4;

}
}

}

(b) Flattened method and invocation

Figure 6.4: The effect of the Flattening normalizer

Section 6.6 describes a way to undo the flattening once the rewriters are done. In extreme cases, the

number of temporary variables could overflow the Java Virtual Machine’s maximum of 255 variables in a

method. Thus undoing the flattening can be necessary to even compile the resulting code.

6.3 Analyses

Three layers of analysis of the abstract syntax tree form the basis for the rewriters. The first layer is a simple

analysis of the ways abrupt flow may occur in the program. Abrupt flow includes exceptions thrown and

caught, break and continue statements, and finally clauses. Using the abrupt flow analysis, we can build a

full flow analysis of the statements. This analysis links together expressions by execution flow. On top of

this, the use-def analysis links together declarations, assignments and uses of local variables and method

parameters. This allows us to perform various propagations and remove unused code.

The analyses are implemented using AspectJ[43] aspects to add the traversal functions and fields holding
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the results to nodes. Instead of changing the files implementing the AST itself, this allows us to keep the

fields and methods related to the analyses in a separate file. As an additional bonus, the error messages

generated by the AspectJ compiler,ajc , turned out to be more informative than those ofjavac .

6.3.1 Abrupt Flow Analysis

The abrupt flow analysis is the lowest layer of analysis in the rewriting system. It simplifies the flow analysis

by locating any non-local flow possible in the program.

The abrupt flow is found using a single traversal of the AST. During traversal, each node returns the

set of abrupt completions that could happen during its execution and that are not handled by itself or its

sub-nodes. For instance, abreak statement always returns itself, but awhile statement with an unlabeled

break statement inside it does not return the break statement – it has been handled by thewhile statement.

Nodes that can cause abrupt completions includebreak andcontinue statements and any statement or

expression that can cause an exception to be thrown.

While the Java specification states that exceptions in Java are precise[29, section 11.3.1], following this

to the letter would mean that every bytecode instruction3 could cause an exception. This is clearly un-

workable, as it would allow no code transformations to take place at all. The author has earlier argued that

for purposes of program analysis, most unchecked (i.e. non-userdefined) exceptions should be ignored[10,

pages 40–42]. These exceptions are the result of errors in the program, the compiler or the virtual machine,

rather than just an irregular occurrence that a programmer would check for. Following this argument, the

only unchecked exceptions that are considered in the abrupt flow analysis areArithmeticException ,

IndexOutOfBoundsException , SecurityException , ClassNotFoundException , andIn-

terruptedException . These only occur in a few, well-defined places. All user-defined exceptions

must be considered.

We currently take a conservative stance on exception handlers. Rather than attempting to figure out

whether an exception handler can handle all exceptions thrown within its body, we assume that any exception

handler will catch some, but not necessarily all, exceptions thrown within it. Thus, abrupt flow proceeds

from any place that may throw an exception both into the exception handler and out of the catch body.

To improve this, we would have to remember the set of exceptions that can be thrown inside an exception

3With the possible exception ofNop
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handler and remove those that the handler catches.

The abrupt flow analysis does not handle thefinally construct yet.

During the analysis, each node that handles abrupt completions stores the set of nodes in the AST that

may lead to it through abrupt completion. This stored information is then used in the flow analysis described

below.

6.3.2 Flow Analysis

Given the information on non-local control flow found by the abrupt flow analysis, and the local control flow

inherent in the AST nodes, we can now generate a flow graph for the program. This is done with a traversal

over the AST, with a fixed-point iteration calculating the backflow of each loop construct.4

During the traversal, we pass a set of inflow nodes into each node visited. The node then sets up local

information in the node itself and in the nodes in the inflow set, connecting the nodes with forwards and

backwards flow. It then handles any flow within itself, such as inif or while statements. Finally, it

generates the outflow set. In most cases, this set simply contains one node, but break statements and if-

branches may add more nodes. The enclosing node uses the outflow set as the inflow set for the next node

in sequence, if any. For instance, a statement list passes the outflow set from one statement as the inflow set

to the next, while anif statement uses the outflow set from the test as the inflow set for both branches.

To reduce the number of nodes that carry flow analysis information, we chose not to perform flow

analysis within expressions. This leads to a view of the program where expressions perform actions, while

statements are mostly abstracted into the control flow graph. In retrospect, this choice may not have been

the best, as it significantly complicated the use-def analysis.

6.3.3 Use-Def Analysis

With the full control flow information available, we can go on to analyze how local variables and method

parameters are declared, assigned, and read. This is the most complex of the three analyses, in part due to

the way the flow analysis operates at the statement level rather than the expression level, and in part due to

the presence of inner classes, for which use-def analysis of free variables presents additional complexities.

4Fixed-point iteration was chosen rather than a single iteration with backpatching because it makes it easier to show that the
backflows are correctly calculated. It does not cause a significant performance hit.
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The use-def analysis is a fixed-point iteration traversal of the flow graph, with sub-traversals of the

ASTs for expressions. The set of current definitions is passed around during the traversal, and the nodes

are annotated with pointers from definitions (assignments) to possible uses, from uses (reads) to possible

definitions, and between all definitions and uses and their declarations.

There are three different traversers in use in the use-def analysis. Firstly, there is theOuterTraverser ,

which traverses class definitions to find method bodies. For each method body, a fix-point traverse traverses

the flow graph, starting with a set of definitions containing only the method parameters. This traversal per-

forms fixed point iteration to evaluate the effect of cycles in the flow graph. Each expression within a flow

graph node is then traversed byUseDefTraverser in a tree-like manner to harvest definitions5 and uses.

When an inner class is encountered inside a method body, the bodies of any methods inside that class

must be separately traversed, but with access to the definitions in the outer method, in case they are ac-

cessed in the inner method. To that purpose, a newUseDefTraverser object is created, and the current

UseDefTraverser is stored in it as the outer traverser.

Static Single Assignment form (SSA)[17] would have eased the analysis somewhat, and indeed most

places where definitions are used we want to know that there is only one definition. However, we felt that the

extra transformations and handling of theφ-nodes would outweigh most of the benefits. Indeed, the handling

of multiple possible definitions has given few problems, and allows some rewriters like TightenType to easily

access all possible definitions.

The most significant problems in the use-def analysis were caused by improper cleanup of the use-def

information on the AST, and inner classes in loops. To simplify the rewriters, we did not require them

to adjust the use-def information after each rewrite. Instead, we collect all rewrites that are found in one

scan, apply them together, and then throw away the use-def information. Some information was not properly

disposed of, causing intermittent errors in the later analyses. Inner classes require a separate analysis because

control flow from the enclosing class does not enter the inner class. However, since outer variables can be

captured, and might have different values in different loop iterations, special care must be taken to repeat

the analysis of inner classes in loops.

A working use-def analysis for Java programs is a valuable tool, not only for the rewriters, but for

any kind of analysis and optimization tool. While we do assume that the FQCN, ForWhile and DoWhile

5Java allows assignments as part of expressions.
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normalizers have been applied, we do not rely on flattening, as that would make it impossible to implement

the SingleUse unnormalizer described in section 6.6.1. Thus, the flattening transformation, which can cause

slowdowns if not undone, is not necessary to use this analysis for other purposes.

6.4 Code-expanding Rewriters

The rewriting system performs a number of optimizations by repeated application of a set of simple rewrite

rules. The only special assumptions the rewriters make about the code are those guaranteed by the normaliz-

ers. However, the rewriters are designed to work best with the style of Java found in the Jumbo combinators:

many final variables, fields and methods, objects that are used as tuples, function objects, and other features

reminiscent of functional programming. The rewriters rely not only on the normalizers and the underlying

analyses described above, but also on the ability to determine the type of any expression.

We give an example of the transformations done by each rewriter. For the sake of legibility, the examples

are not in fully flattened form where it makes no difference for the rewriter in question.

The first two rewriters, the expanding rewriters, perform transformations that may increase the size of

the program, in the hope that further transformations can then decrease the size significantly. Since they are

not applied automatically, they do not need to make progress in the sense of section 6.1.

6.4.1 Inlining

The Inlining rewriter is the most complex rewriter in the system. It will attempt to inline a method invocation

where the actual method can be determined. The only methods that can be inlined are those marked final,

marked static, or that appear in a final class (including anonymous inner classes). Adding more careful

analyses of subclassing and type restrictions would allow more methods to be inlined.

In order to preserve the semantics of call-by-value parameters, the actual arguments to the method

are stored into generated variables rather than copied throughout the inlined method. Similarly, return

statements in the method are replaced with an assignment to a generated variable followed by a break

statement. While we could avoid this extra copying by analyzing whether the variables are assigned to

inside the method, the code-reducing rewriters can remove any extraneous definitions anyway without the

need for extra analysis.
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public class Point {
double x;
double y;
final double hDist(Point p) { ... }
boolean isLeftOf(Point p) {

{
final double flatten_3;
{

final Point gen5_this;
gen5_this = this;
Point gen5_p;
gen5_p = p;
final double gen5_return;
gen5_break: {

{
final double gen5_flatten_0;
gen5_flatten_0 = gen5_p.x;
final double gen5_flatten_1;
gen5_flatten_1 = gen5_this.x;
final double gen5_flatten_2;
gen5_flatten_2 = (gen5_flatten_0-gen5_flatten_1);
{

gen5_return = gen5_flatten_2;
break gen5_break;

}
}

}
flatten_3 = gen5_return;

}
final boolean flatten_4;
flatten_4 = (flatten_3>0);
return flatten_4;

}
}

}

Figure 6.5: The effect of the Inlining rewriter on the code in Figure 6.4(b). The original body of hDist has
been elided.

For non-static methods we need to replace references tothis andsuper with references to the appro-

priate classes. Anonymous inner classes, having no named type, cannot have theirthis instance directly

assigned. Thus, when inlining a method on an anonymous inner class, we must name the class with a unique

name and assign a new instance of the named class to thethis instance. Named inner classes inside me-

thods can be inlined if care is taken to ensure unique naming in case the same named class is inlined multiple

times in one method. We currently do not allow inlining of methods with named inner classes, as it is rarely

seen in the combinators.

Figure 6.5 shows an example of what an inlined method looks like. The method arguments, thethis
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reference, and the return value are all stored in generated variables, and all variables in the method have

unique names assigned to them. Thereturn statement is replaced by an assignment to the return value

followed by a break. At the end of the inlining, the result is assigned to the variable that originally received

the return value. This is required to allow final variables to be assigned values from methods that may have

several return statements.

Figure 6.5 also shows that inlining adds a number of extraneous scopes, variables and breaks. Rather

than complicating the Inlining rewriter with avoiding these, they are removed by separate rewriters.

To define inlining, we must first define several helper functions. In these functions,νx means the unique

name generated forx in this inlining. Prelude sets up the variables being generated for the target and the

method arguments.

Prelude(et, a1, . . . , ai) = sthis,

VARDECL(TypeOf(a1), ν1), ASSIGN(ν1, a1),
...

VARDECL(TypeOf(ai), νi), ASSIGN(νi, ai),

where

sthis = STATEMENTS(VARDECL(TypeOf(et), ν this), ASSIGN(ν this, et)), if et 6= ε

ε otherwise

NewBody performs the replacements inside the copy of the method body. In this,e [a/b] meanse with

all occurrences ofb replaced bya.

NewBody(m, r) = BodyOf(m) [ ν this/THIS(), ν1/p1, νi/ . . . , pi, ε/CLASS(_),

STATEMENTS(ASSIGN(νret, e), BREAK(r))/RETURN(e),

BREAK(r)/RETURN(ε), νl1/l1, . . . , νln/ln ]

where l1, . . . , ln = variables declared inm,

p1, . . . , p1 = formal parameters ofm,

DoInline puts the inlined method together, adds a label for the return replacements, and handles assignment

of the return value, if any.

DoInline(m, et, a1, . . . , ai, ε) = LABEL(r, STATEMENTS(Prelude(et, a1, . . . , ai), NewBody(m, r)))
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DoInline(m, et, a1, . . . , ai, v) =

STATEMENTS(VARDECL(TypeOf(m), νret), DoInline(m, et, a1, . . . , ai, ε), ASSIGN(v, νret))

whereνret is fresh

The MakeThis function handles the proper definition ofthis in the inlined method. Static methods

have no this, and most non-static methods can just use the target they were invoked on. However, anonymous

classes must be named for the type ofthis to be correct. Thus, when the target of a method invocation

is an anonymous class, we create a named class with the same body plus an extra constructor that calls the

constructor of the superclass. We then use a new instance of the named class as replacement forthis in

the inlined method. The MakeThis function returns a tuple of a new class definition and the expression that

should be used as the method invocation target.

MakeThis(_,m) = (ε, ε) if m is static

MakeThis(ANONYMOUSCLASS(cs, a1, . . . , an, s),m) =

(CLASS(c, cs, STATEMENTS(CONSTRUCTOR(p1, . . . , pn, SUPERCALL (p1, . . . , pn)), s)),

NEWOBJECT(c, a1, . . . , an))

wherec is a fresh class name

MakeThis(t, m) = (ε, t)

We are now ready to define the inlining rewriter itself. The rewriter detects four variants of inlining

opportunities — whether or not the result is being assigned, and whether or not the method is static — and

calls DoInline. The FindMethod function finds the method on the given expression that matches the name

and arguments.

Inlining [[EXPRESSIONSTATEMENT(METHODINVOCATION(et, n, a1, . . . , ai))]] ⇒

STATEMENTS(c, e)

if (c, e′t) = MakeThis(et),

m = FindMethod(TypeOf(et), n, a1, . . . , ai),

m is a final method,

e = DoInline(m, e′t, a1, . . . , ai, ε),
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Inlining [[ASSIGN(VAR(v), METHODINVOCATION(et, n, a1, . . . , ai))]] ⇒ STATEMENTS(c, e)

if (c, e′t) = MakeThis(et),

m = FindMethod(TypeOf(et), n, a1, . . . , ai),

m is a final method,

e = DoInline(m, e′t, a1, . . . , ai, v),

Inlining [[EXPRESSIONSTATEMENT(METHODINVOCATION(et, n, a1, . . . , ai))]] ⇒ e

if m = FindMethod(TypeOf(et), n, a1, . . . , ai),

m is a static method,

e = DoInline(m, ε, a1, . . . , ai, ε),

Inlining [[ASSIGN(VAR(v), METHODINVOCATION(et, n, a1, . . . , ai))]] ⇒ e

if m = FindMethod(TypeOf(et), n, a1, . . . , ai),

m is a static method,

e = DoInline(m, ε, a1, . . . , ai, v),

6.4.2 WhileUnroll

In some cases, unrolling a loop can provide more opportunities for optimizing. Although this is more usable

for languages with low-level optimizations, there may be cases where unrolling can help in a Java program.

A short constant-length loop can be completely unrolled, or the first iteration can be unrolled to make the

remaining loop have similar definitions from inflow and backflow.

Sincefor anddo loops are transformed intowhile loops as part of normalization, we need only deal

with while when attempting unrolling. The WhileUnroller rewriter unrolls a single iteration of a while

statement. It creates a newif statement guarding one copy of the loop body followed by the loop itself.

Variables defined inside the loop body must be replaced with uniquely named variables, so that when later

reductions remove scopes around them, they do not clash with the original variables. Figure 6.6 shows how

a while loop is unrolled.

WhileUnroll [[WHILE(et, sb)]] ⇒ IF(et, sb[νi/vi], WHILE(et, sb))

if vi is the set of variables defined insb
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int sumSquares(int max) {
int sum;
sum = 0;
int x;
x = 0;
while (true) {

final boolean flatten_0;
flatten_0 = (x < max);
if (flatten_0) {

final int flatten_1;
flatten_1 = (x*x);
sum = (sum+flatten_1);
x = (x+1);

} else break;
}
return sum;

}

(a) Before WhileUnroll

int sumSquares(int x) {
int sum;
sum = 0;
if (true) {

{
final boolean unroll1_flatten_0;
unroll1_flatten_0 = (x < max);
if (unroll1_flatten_0) {

final int unroll1_flatten_1 = (x*x);
sum = (sum+unroll1_flatten_1);
x = (x+1);

} else break;
}
while (true) {

final boolean flatten_0;
flatten_0 = (x < max);
if (flatten_0) {

final int flatten_1;
flatten_1 = (x*x);
sum = (sum+flatten_1);
x = (x+1);

} else break;
}

}
}

(b) After WhileUnroll

Figure 6.6: Unrolling one iteration of a while loop. Variables defined inside are renamed to avoid later name
clashes.

6.5 Code-reducing Rewriters

The bulk of the rewriters are reducing rewriters that can never increase the size of a program (in terms of

AST nodes), and will usually reduce the size. While some of them perform common optimizations like

constant propagation and arithmetic reduction, many of them mainly serve to clean up extraneous code

created by the expanding rewriters. This allows the expanding rewriters to be simpler.

The overall approach to designing the code-reducing rewriters is to make many small rewriters rather

than a few big ones. Some similar rewrites, such as constant propagation through fields under varying condi-

tions, are split into several rewriters when the checks necessary to verify their applicability are significantly

different. This may lead to some overlap in the effects of the rewriters, but ensures that each rewriter is as

simple as possible to write, debug and understand.
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6.5.1 UnusedBreak

Since the Inlining rewriter replaces return statements with labeled breaks, we can end up with “spaghetti

code” if the original method has many returns. However, any break that does not affect the control flow of

the code can be removed by the UnusedBreak rewriter. These unnecessary breaks are introduced when a

return statement occurs at the end of the control flow in a method. Figure 6.7 shows how some breaks can

be removed, even if they are not the syntactically last statement in a block.

public class UnusedBreak {
int breaks(boolean b) {

A: {
{

if (b) break A;
}
if (b) break A;
else b = false;

}
}

}

(a) Two breaks in a method

public class UnusedBreak {
int breaks(boolean b) {

A: {
{

if (b) break A;
}
if (b) ;
else b = false;

}
}

}

(b) The second break can be removed by UnusedBreak

Figure 6.7: How UnusedBreak can remove Break statements at the end of control flow.

To check whether a break can be removed, we must check all statements enclosing the break statement,

out to its target. For each enclosing statement list, we must find ourselves in the very last statement, or

removing the break could cause statements to be skipped. Furthermore, if the break breaks out of a while

loop or a switch construct, we leave the break in place.

UnusedBreak[[s = BREAK(l)]] ⇒ ε

if p0 = s, Parents(s) = (p1, p2, . . . , pn),

Target(s) = pk,

∀i : 1 < i ≤ k, pi = STATEMENTS(s1, s2, . . . , sm) : sm = pi−1,

∀1 < i < k : pi 6∈ {WHILE(W ), SWITCH(S)}

In many cases where returns occur before the end of the control flow for a method, a simple change in the

programming style can make the method more amenable to being reduced after inlining. For example, while

the code example in Figure 6.8(a) leads to spaghetti-like breaks when inlined, the functionally equivalent

code in Figure 6.8(b) does not create any breaks that cannot be removed, as all the returns are at the end
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int quadrant(float x, float y) {
if (x > 0) {

if (y > 0) return Q_NE;
return Q_SE;

}
if (y > 0) return Q_NW;
return Q_NE;

}

(a) Non-removable

int quadrant(float x, float y) {
if (x > 0) {

if (y > 0) return Q_NE;
else return Q_SE;

} else {
if (y > 0) return Q_NW;
else return Q_NE;

}
}

(b) Removable

Figure 6.8: The use ofreturn insideif determines whether breaks introduced by inlining can be removed.

of the control flow anyway. The latter style is similar to that of some functional languages, where an if

statement always has both a true branch and a false branch. However, there are cases where such a style

would lead to overly complex control flow, particularly when checking a number of predicates, each of

which cause a return.

6.5.2 UnusedScope

Extraneous scopes are introduced by a number of rewriters, in particular inlining and flattening, in order to

ensure a scope for temporary variables. These scopes not only clutter the code, they also make it harder for

other rewriters to prove that a rewrite is legal. Fortunately, many newly introduced scopes can be removed

immediately.

Only three situations can prevent a scope from being removed:

• The scope contains several statements that must be grouped inside anif , while or similar statement.

• A variable is defined inside the scope, and a variable of the same name is defined after the end of the

scope.

• A break statement occurs within the scope that breaks out of exactly that scope.

The first situation is benign, as such scopes are not introduced by other rewriters. The second situation

is rare, so we take the conservative approach of never deleting a scope if a variable defined directly in

that scope has the same name as a variable defined anywhere else in the method. Only the third situation

happens with any frequency, mostly when the Inlining rewriter has introduced breaks for return statements.

As mentioned in 6.5.1, a change of programming style can allow many such breaks to be removed.

113



void f (boolean b) {
if (b) {

A:{
int c;
B:{

int a;
}

}
} else {

C: {
int d;
D:{

break C;
}

}
int a;

}
}

(a) Before UnusedScope

void f(boolean b) {
if (b) {

int c;
B: {

int a;
}

} else {
C: {

int d;
break C;

}
int a;

}
}

(b) After UnusedScope

Figure 6.9: Scopes being removed by UnusedScope rewriter.

Figure 6.9 shows which scopes can be removed by UnusedScope and which not. ScopeB is retained

because we cannot prove thata is not defined twice. ScopeC is retained because it is the target of a break.

If the UnusedBreak rewriter is applied to this, the break would disappear, and scopeCcould be removed as

well.

UnusedScope[[s = SCOPEDSTATEMENTS(s1, s2, . . . , sn)]] ⇒ (s1, s2, . . . , sn)

if the surrounding node is SCOPEDSTATEMENTS() or STATEMENTS(),

m = the method containing s,

∀b = BREAK(_) ∈ Statements(s1, s2, . . . , sn) :

s 6= Target(b),

∀sv = VARDECL(t, v) ∈ Statements(s1, s2, . . . , sn) :

∀sv′ = VARDECL(t′, v′) ∈ Statements(m) :

v 6= v′ ∨ sv = sv′
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int foo() {
int v = 3;
int u = v;
int w;
if (u == 2) w = u;
else {

int x = u+1;
w = x;

}
return w;

}

(a) Before CopyAssigment

int foo() {
int v = 3;
int u = v;
int w;
if (v == 2) w = v;
else {

int x = v+1;
w = x;

}
return w;

}

(b) After CopyAssignment

Figure 6.10: CopyAssignment can changeu to v, but cannot changew — not only isw multiply defined,
the second definition cannot leave the scope

UnusedScope[[s = LABEL(l, SCOPEDSTATEMENTS(s1, s2, . . . , sn))]] ⇒ (s1, s2, . . . , sn)

if the surrounding node is STATEMENTS(_),

m = the method containing s,

∀b = BREAK() ∈ Statements(s1, s2, . . . , sn) :

s 6= Target(b),

∀sv = VARDECL(t, v) ∈ Statements(s1, s2, . . . , sn) :

∀sv′ = VARDECL(t′, v′) ∈ Statements(m) :

v 6= v′ ∨ sv = sv′

6.5.3 CopyAssignment

A copying assignment occurs when a variable is assigned the value of another variable. In that case, we

would like to directly change any uses of the second variable to uses of the first variable. To do that, we

must ensure that the variable does not change between definition and use. While this rewrite is small, it

occurs frequently with inlined code.

The MayMove function checks whether it is legal to move a variable to replace an expression in the AST.

It checks that scoping is obeyed, and that the definition of the variable cannot change between the two places.

Conservatively, we check stability of the definition by checking that all definitions of the variable anywhere

in the method come before the variable being moved. Figure 6.10 shows some cases where CopyAssignment
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can be used, and some where it cannot.

MayMove(vfrom, eto) = true, if vfrom dominateseto ∧ vfrom is in scope ateto∧

∀edef ∈ Defs(Decl(vfrom)) : edef dominatesvfrom

false otherwise

CopyAssignment[[ASSIGN(v1, v2)]] ⇒ ASSIGN(v1, v3)

if Defs(v2) = {v2 = v3},

MayMove(v3, v1)

6.5.4 FieldValue

Final fields are frequently used in Java to define constants. These fields may be found in places that cannot

be accessed by simpler rewrites. For instance, copying an expression out of an object field may cause

unforeseen side effects, or a variable may not have any meaning outside of its method. Instead of copying

the first definition encountered for a field, this rewriter attempts to trace the contents of fields, variables and

arrays as far back as possible. If in the end the contents turn out to be movable, and all the intermediate

steps can be proven sufficiently constant (by being final or assigned immediately before), it will replace the

field with the contents found.

In figure 6.11, the field lookupflatten_1.h can be traced back through the fieldflag , through the

constructor, to the fieldA, whose initializer we can move. The values assigned toh andflag , while fixed,

cannot be moved to replace the field lookup, as that could cause code duplication (ofnew Fields(a) ) or

violate scope rules (forx ). This particular example is similar in structure to theType class used in Jumbo.

class Fields {
static final int A = 1;
final Fields flag = new Fields(A);
final int h;
Fields(int x) { h = x; }
int sumFields() {

Fields flatten_1 = this.flag;
return flatten_1.h;

}
}

(a) Before FieldValue

class Fields {
static final int A = 1;
final Fields flag = new Fields(A);
final int h;
Fields(int x) { h = x; }
int sumFields() {

Fields flatten_1 = this.flag;
return 1;

}
}

(b) After FieldValue

Figure 6.11:flatten_1.h can be replaced with 1, even though it must be traced though two fields.
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The helper function ExpressionContents attempts to find a movable definition of an expression by fol-

lowing definitions as far as possible.

ExpressionContents(ARRAYACCESS(ea, ei)) = ex

if et = ExpressionContents(ea),

L ITERAL(x) = ExpressionContents(ei),

Parents(et) = [p1, . . .] ,

ASSIGN(VAR(v), ARRAYCREATION(t, el)) = p1,

∀u ∈ Uses(Decl(v)) : ASSIGN(ARRAYACCESS(u, eu), ex)∨

ASSIGN(VAR(_), ARRAYACCESS(u, _))

∀eu : ExpressionContents(eu) = L ITERAL(x),

eu dominatesea,

et dominateseu

ExpressionContents(FIELDACCESS(e, f)) = ak

if et = ExpressionContents(e),

et = NEWOBJECT(c, a1, . . . , ai),

f is defined onc,

f is non-static and final,

f is assigned VAR(pk) in the constructor,

pk is final,

ak dominatese

ExpressionContents(FIELDACCESS(e, f)) = ef

if et = ExpressionContents(e),

f is defined onet,

f is final,

f is initialized toef

117



ExpressionContents(FIELDACCESS(e, f)) = ea

if et = ExpressionContents(e),

et = NEWOBJECT(c, a1, . . . , ai),

f is defined onc,

f is non-static and final,

f is assignedea in the constructor,

ea = L ITERAL(x)

ExpressionContents(VAR(v)) = d, if Defs(v) = {d} ∧ d dominatesv,

ε otherwise

ExpressionContents(L ITERAL(x)) = L ITERAL(x)

ExpressionContents(THIS()) = THIS()

ExpressionContents(THIS(c)) = THIS(c)

ExpressionContents(_) = ε

FieldValue [[ef = FIELDACCESS(e, f)]] ⇒ VAR(v)

if VAR(v) = ExpressionContents(ef ),

MayMove(v, e)

FieldValue [[ef = FIELDACCESS(e, f)]] ⇒ e′

if e′ = ExpressionContents(ef )

e′ ∈ {L ITERAL(x), THIS(_), UNARY(v)}

6.5.5 Untupling

Jumbo uses a number of tuple-like objects, i.e. objects where all fields are final and initialized via constructor

parameters. In this rewriter, we find uses of fields whose definition we can locate, and replace the uses with

the definition. In order to ensure that the field has the assigned value, we check that the object being

assigned to is created in view and does not escape to a place we cannot check. We also need to check that

the assignment to the field is the only one, and that we can move the expression being assigned to the use.

Unlike the FieldValue rewriter, Untupling allows us to propagate values through non-final fields. Figure 6.12

shows an example of a field lookup that Untupling can rewrite.
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class Tuple {
final int a;
Tuple(int x) { a = x; }

}
class UseTuple {

int storeAndLoad(int x) {
Tuple t1 = new Tuple(x);
return t.a;

}
}

(a) Before Untupling

class Tuple {
final int a;
Tuple(int x) { a = x; }

}
class UseTuple {

int storeAndLoad(int x) {
Tuple t1 = new Tuple(x);
return x;

}
}

(b) After Untupling

Figure 6.12: Untupling can move a non-final variable through an object field.

The helper function MayEscape checks through the chain of constructors to see if the object may be able

to escape at any point.

MayEscape(c, a1, . . . , an) = true

iff ∃ci ∈ Constructors(c, a1, . . . , an) : ∃s ∈ Statements(ci) :

s = THROW(_)∨

s = NEWOBJECT(_)∨

s = METHODINVOCATION(_)∨

s = ASSIGN(f, e), wheref is a static field or a field defined in another object

Untupling [[e = FIELDACCESS(v, f)]] ⇒ ai

if e is not the left-hand side of an assignment,

Defs(v) = {ec = NEWOBJECT(c, a1, . . . , an)},

f is defined inc,

Constructors(c, a1, . . . , an) = [m, . . .],

m = CONSTRUCTOR(p1, . . . , pn, s, b),

∃ exactly one ASSIGN(FIELDACCESS(THIS(), f), ef ) ∈ b,

ef = (pi ∧MayMpve(ai, v)) ∨ ef = L ITERAL(x),

¬mayEscape(ec),

∀u ∈ Uses(Decl(v)) :

(ASSIGN(FIELDACCESS(u, f), ea) ∧ e dominatesu)∨

(ASSIGN(FIELDACCESS(u, f ′)) ∧ f 6= f ′)
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6.5.6 ArrayLength

The ArrayLength rewriter attempts to propagate the length of an array from its initialization to its use.

The initialization of the array must dominate the use. Because of flattening, the expression used in the

initialization is a variable or a literal. If it is a variable, we must check that it is available at the use of the

array.

ArrayLength [[FIELDACCESS(e1, “length”)]] ⇒ e

if Defs(n1) = {ASSIGN(e1, ARRAYCREATION(t, e))},

e = L ITERAL(_)

ArrayLength [[FIELDACCESS(e1, “length”)]] ⇒ e

if Defs(n1) = {ASSIGN(e1, ARRAYCREATION(t, e))},

e = VAR(v),

e dominatese1,

∀e′ ∈ Defs(Decl(v)) : e′ dominatese,

v is in scope ate1

6.5.7 Arithmetic

Arithmetic rewriting aims at reducing arithmetic expressions. Since expressions are flattened, the operands

of binary expressions can only be literals, variables orthis expressions. None of the operand expressions

can have any side-effects, so we can reduce logical expressions without having to worry about whether side-

effects are affected. We also reduce multiplication by 0 or 1 and additions and subtractions with 0, as well

as operations on literal strings. By checking what the possible definitions of variables compared tonull

are, we can also reduce some object comparisons. The current implementation does not nearly exhaust the

numerous ways we can do arithmetic rewritings, but covers those cases we are most likely to encounter

when rewriting the combinators.

NonNull(e) = true, if∀e′ ∈ Defs(e) :

e′ ∈ {NEWOBJECT(c, a1, . . . , an), ANONYMOUSCLASS(s, a1, . . . , an)}

false otherwise

Arithmetic [[BINARY(e1, ||, e2)]] ⇒ true, if e1 or e2 is true
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Arithmetic [[BINARY(e1, && , e2)]] ⇒ false, ife1 or e2 is false

Arithmetic [[BINARY(true, && , e)]] ⇒ e

Arithmetic [[BINARY(e, && , true)]] ⇒ e

Arithmetic [[BINARY(false, ||, e)]] ⇒ e

Arithmetic [[BINARY(e, ||, false)]] ⇒ e

Arithmetic [[BINARY(e1, * , e2)]] ⇒ 0, if e1 or e2 is 0

Arithmetic [[BINARY(1, * , e)]] ⇒ e

Arithmetic [[BINARY(e, * , 1)]] ⇒ e

Arithmetic [[BINARY(0, +, e)]] ⇒ e

Arithmetic [[BINARY(e, +, 0)]] ⇒ e

Arithmetic [[BINARY(e, -, 0)]] ⇒ e

Arithmetic [[BINARY(0, -, e)]] ⇒ UNARY(−, e)

Arithmetic [[BINARY(null,=, null)]] ⇒ true

Arithmetic [[BINARY(null, 6=, null)]] ⇒ false

Arithmetic [[BINARY(null,=, e)]] ⇒ false

if NonNull(e)

Arithmetic [[BINARY(null, ! =, e)]] ⇒ true

if NonNull(e)

Arithmetic [[BINARY(e,=, null)]] ⇒ false

if NonNull(e)
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Arithmetic [[BINARY(e, ! =, null)]] ⇒ true

if NonNull(e)

Arithmetic [[BINARY(L ITERAL(l1), o, L ITERAL(l2))]] ⇒ l

if l is the evaluation ofo on l1 andl2

Arithmetic [[UNARY(!, e ∈ {false, true})]] ⇒ ¬e

Arithmetic [[UNARY(−, L ITERAL(x))]] ⇒ −x

6.5.8 ConstantPropagation

The ConstantPropagation rewriter finds uses of variables where the only possible definition assigns a con-

stant value. This is similar to CopyAssignment, but does not require checking if the value can be moved,

and so allows propagating in more cases.

ConstantPropagation[[ASSIGN(v1, VAR(v2))]] ⇒ ASSIGN(v1, L ITERAL(x))

if Defs(v2) = {L ITERAL(x)}

6.5.9 Switch

If the expression used in aswitch statement is a constant value, we can remove the switch, leaving only

the case used. If the case used has control flow going into the next case, we must preserve that case as well,

etc. Figure 6.13 shows a switch that can be reduced due to the test being constant. The cases 3, 4, 5 and 6

are kept, but the default cannot be reached and so is discarded.

ControlTo(n, n′) = true, iff control flow can pass fromn to n′.

Switch [[SWITCH(L ITERAL(x), c1 : SwitchCase, . . . , cn : SwitchCase)]] ⇒

SCOPEDSTATEMENTS(s′)

if ∀i : 0 < i ≤ n : ci = SWITCHCASE(ei,1, . . . , ei,k, si),

∃i, j : ei,j = x,

∃m : i ≤ m ≤ n : ∀t : i ≤ t < m : ControlTo(st, st + 1),

m = n ∨ ¬ControlTo(sm, sm + 1),

s′ = STATEMENTS(si, . . . , sm)
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int switcher(int x) {
switch (3) {

case 1: return 0;
case 2: return 2;
case 3: case 4: x += 1;
case 5: if (x == 3) return x;
case 6: return x+1;
default: return x;

}
}

(a) Before Switch

int switcher(int x) {
x += 1;
if (x == 3) return x;
return x+1;

}

(b) After Switch

Figure 6.13: A constant-value switch statement can be reduced, but we must preserve any fall-through.

Switch [[SWITCH(L ITERAL(x), c1 : SwitchCase, . . . , cn : SwitchCase)]] ⇒

SCOPEDSTATEMENTS(s′)

if ∀i : 0 < i ≤ n : ci = SWITCHCASE(ei,1, . . . , ei,k, si),

6 ∃i, j : ei,j = x,

∃i : ci = DEFAULTCASE(si),

∃m : i ≤ m ≤ n : ∀t : i ≤ t < m : ControlTo(st, st + 1),

m = n ∨ ¬ControlTo(sm, sm + 1),

s′ = STATEMENTS(si, . . . , sm)

6.5.10 TightenType

If the declared type of a variable is less specific than what is being assigned to it, we can rewrite the variable

declaration to have a more specific type. This in turn may help the Inlining rewriter prove that a method

invocation on that variable can safely be inlined. If there is more than one possible assignment, we pick the

most specific class that complies with all the assignments. Because the FQCN rewriter makes static field

accesses and method invocations use explicit class names for targets, the semantics of those are preserved.

Figure 6.14 shows how a variable type can be promoted.

TightenType [[VARDECL(t, v)]] ⇒ VARDECL(t′, v)

if ∀e′ ∈ Defs(v) : e′ = ASSIGN(v, e) ∧ TypeOf(e) v t′
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class C1 {}
class C2 extends C1 {}
class C3 extends C1 {}
class Subclasses {

void foo(C3 x) {
Object o = new C2();
if (x != null) o = x;

}
}

(a) Before TightenType

class C1 {}
class C2 extends C1 {}
class C3 extends C1 {}
class Subclasses {

void foo(C3 x) {
C1 o = new C2();
if (x != null) o = x;

}
}

(b) After TightenType

Figure 6.14: The variableo can be promoted to typeC1, the common superclass of the two objects assigned
to it.

6.5.11 IfReduction

When the test in anif statement is a constant value, we can reduce the statement to either its true branch or

its false branch. Since other rewriters should move any constant value into the test, we need but check for

the degenerate case of a literal expression.

IfReduction [[IF(true, st, sf )]] ⇒ st

IfReduction [[IF(false, st, sf )]] ⇒ sf

6.5.12 UnusedDef

When a definition (assignment) of a variable is never used, the assignment can be removed. This in turn

may allow the declaration of that variable to be removed. However, if the expression in the assignment could

have side effects, we cannot remove the assignment. Since the expression is flattened, it is easy to determine

if it can have side effects; only method invocations, array accesses and field accesses can have side effects.

In figure 6.15, the assignment from a method call, while unused, is not rewritten, as a method call might

have side effects.

UnusedDef[[ASSIGN(v, e)]] ⇒ ε

if Uses(v) = ∅,

e 6∈ {METHODINVOCATION(_), ARRAYACCESS(_), CAST(_)}
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int foo() {
int x = 3;
int y = x;
y = Integer.parseString("4");
y = 6;
return y;

}

(a) Before UnusedDef

int foo() {
int x;
int y;
y = Integer.parseString("4");
y = 6;
return y;

}

(b) After UnusedDef

Figure 6.15: The first assignments is used, and cannot be removed, but the second one is unused and can
safely be removed. The third one may have side effects, and the last one is used. In a second application of
UnusedDef, the first assignment is no longer used and can be removed.

6.5.13 UnusedDecl

Declarations of variables that are never used nor assigned to can be immediately removed. Since the nor-

malization process guarantees that declarations have no initializers, this rewriter merely needs to check that

there are no definitions for it in the use-def analysis.

UnusedDecl[[VARDECL(v)]] ⇒ ε

if Defs(v) = ∅

6.5.14 UnusedReturn

This rewriter removes assignments of return values from method invocations and object creations when the

assigned value is never used. The possibility of removing the method invocation or object creation is left to

other rewriters, as that may involve checking for side effects. This allows some assignments to be reduced

that UnusedDef cannot handle. Figure 6.16 shows the three different assignments that UnusedReturn can

reduce.

int foo() {
int x = Integer.parseInt("2");
Object o = new ArrayList();
Object o1 = new Object() { int x; };

}

(a) Before UnusedReturn

int foo() {
Integer.parseInt("2");
new ArrayList();
new Object() { int x; };

}

(b) After UnusedReturn

Figure 6.16: Return values that can safely be discarded.
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UnusedReturn[[ASSIGN(v, e)]] ⇒ e

if e ∈ {METHODINVOCATION(_), NEWOBJECT(_), ANONYMOUSCLASS(_)},

Uses(v) = ∅

6.5.15 UnusedObject

If we can prove that an object creation call does not have any side effects, and the value returned is never

used, we can remove the call. Any object created outside of an assignment (i.e. at statement level) cannot

be used in the calling method.

To ensure that the object creation has no side effects, we check the constructor to ensure that no methods

other than constructor methods are called, that no other objects are created, that no exceptions can be thrown,

and that no assignments are done to static fields or fields in other objects. This must be checked recursively

in calls tothis andsuper constructor calls. This ensures not only that no other objects are affected by the

call, but also that the created object cannot escape to be used somewhere else. Figure 6.17 shows how side

effects in the constructors affect the ability to apply UnusedObject. Because of flattening, the arguments to

the object creation call cannot cause any side effects, and so can safely be removed. The helper function

MayEscape is defined in section 6.5.5.

class Empty {}
class Empty2 extends Empty {

Empty2() { super(); }
}
class Escape { Escape() {

this.toString();
}
class Escape2 {

static int x;
Escape2(int a) { x = a; }

}
int foo() {

new Empty();
new Empty2();
new Escape();
new Escape2(3);

}

(a) Before UnusedObject

class Empty {}
class Empty2 extends Empty {

Empty2() { super(); }
}
class Escape { Escape() {

this.toString();
}
class Escape2 {

static int x;
Escape2(int a) { x = a; }

}
int foo() {

new Escape();
new Escape2(3);

}

(b) After UnusedObject

Figure 6.17: Object creations with no side effects can be removed, but those with possible side effects
cannot.
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UnusedObject[[EXPRESSIONSTATEMENT(NEWOBJECT(c, a1, . . . , an))]] ⇒ ε

if ¬MayEscape(c, a1, . . . , an)

6.5.16 UnusedFieldAssign

While the UnusedDef rewriter can handle variable assignments that are never used, it is more complicated

to remove assignments to fields. If an object can escape to other methods, we cannot hope to prove that an

assigned field is never read. Only if we can prove that the object will not escape the current scope can we

safely remove an unused field assignment.

We have seen in the Untupling rewriter how to prove that an object cannot escape its constructor. If at

the same time the object cannot escape the scope where the constructor was called, and no reads are made

from the field in question, the field assign is never used. We check this by ensuring that all uses of the

variable containing the object are either assignments to the field in question, or else reads from other fields.

This rules out that the object is passed to other methods or otherwise escapes, as any such use would not be

a field read. Figure 6.18 shows how some field writes can be removed.

class Assigns {
int f, g;
void bar() { }
int foo() {

Assigns a1 = new Assigns();
Assigns a2 = new Assigns();
Assigns a3 = new Assigns();
a1.f = 3;
a2.f = 4;
int flatten_1 = a2.f;
a1.f = flatten_1;
a3.f = 5;
a3.bar();
System.out.println(a1.g);

}
}

(a) Before UnusedFieldAssign

class Assigns {
int f, g;
void bar() { }
int foo() {

Assigns a1 = new Assigns();
Assigns a2 = new Assigns();
Assigns a3 = new Assigns();
a2.f = 4;
int flatten_1 = a2.f;
a3.f = 5;
a3.bar();
System.out.println(a1.g);

}
}

(b) After UnusedFieldAssign

Figure 6.18: UnusedFieldAssign can removea1.f assigns, buta2.f is used anda3 might escape in
bar() . Note thata2.f can be removed once the UnusedDef rewriter has removed the assignment to
flatten_1 .
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UnusedFieldAssign[[ASSIGN(FIELDACCESS(v, f), e)]] ⇒ ε

if Defs(v) = {ASSIGN(v, NEWOBJECT(c, a1, . . . , an))},

¬MayEscape(c, a1, . . . , an),

∀eu ∈ Uses(v) :

ASSIGN(FIELDACCESS(eu, f), e′)∨

FIELDACCESS(eu, f ′), wheref ′! = f

6.6 Unnormalizing

As a final step after optimizations are done, we can unnormalize the transformed code to get rid of temporary

variables and other inefficiencies introduced by the rewriters. This is done partly to increase readability by

humans, but mostly to make it easier to compile the code. Some Java compilers, including Jumbo and Javac,

are notoriously simplistic in their register allocation, and could easily run out of registers on flattened code.

Unflattening is done by two rewriters: SingleUse and WhileIf. Note that these only unflatten those things

that may have an impact on execution speed. The separation of variable declarations and initializers, for

instance, is left in place, as it does not change the bytecode created.

6.6.1 SingleUse

The SingleUse rewriter attempts to undo the effects of the Flattening normalizer, in order to avoid extraneous

variable declarations and assignments. Doing this is complicated by the need to preserve order of evaluation

of expressions, in particular for method invocations, field accesses and array accesses.

The rewriter is somewhat simplified by noting that the variables involved in an expression are frequently

evaluated just prior to the expression. This would be the case in all places if flattening was the only rewrite

that had occurred. Other rewriters may have changed this somewhat, but our experience is that the flattened

structure is mostly preserved as is.

In order to ensure preservation of evaluation order, the rewriter assembles each expression from its

subexpressions last to first. When considering whether to move the definition of a subexpression, it must

first show that no subexpressions later in the expression might need to be moved, and then show that no

subexpressions earlier in the expression might be dangerous to move the definition across.
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SingleUse must not only replace the use of a variable with its definition, it must also remove the de-

finition to avoid code duplication. We cannot use the UnusedDef rewriter to remove the definition, as the

right-hand side of the assignment might be a method invocation, which UnusedDef cannot remove. While

most other rewriters merely return a replacement value for each node, which is then applied after the rewriter

has traversed the tree, SingleUse must make two changes, and therefore needs to change the AST directly.

Since any such change can break the use-def analysis, each traversal with the SingleUse rewriter replaces at

most one variable.

After SingleUse has been applied to unflatten all that can be unflattened, a number of unused variable

declarations are left behind. The UnusedDecl rewriter does not depend on flattening to function correctly,

so it can remove these afterwards.

For the definition of UnusedDef, we let X() stand for any AST node that directly contains subexpres-

sions, ande → e′ stand for an in-tree replacement of the nodee by the nodee′. The first helper function,

IsDangerous, checks whether a node is dangerous to move an expression across. Conservatively, we con-

sider only the very simplest expressions to be nondangerous: Literals,this -expressions, variables and

class names.

IsDangerous(L ITERAL(_)) = false

IsDangerous(QUALIFIED NAME(_)) = false

IsDangerous(THIS(_)) = false

IsDangerous(x) = true

The NothingBefore helper function checks the expression containing the use we are interested in, and

makes sure that no prior expressions (in evaluation order) would be dangerous to move the definition across.

Again, we take a conservative approach.

NothingBefore(e) = true, if e is not an Expression

NothingBefore(e) = true, if Parents(e) = {ep, . . .},

ep = X(e1, . . . , ej−1, e, ej+1, . . . , en),

∀i ∈ [1 . . . j − 1] : ¬IsDangerous(ei),

NothingBefore(ep)

NothingBefore(e) = false
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The IsMovable helper function checks whether a particular variablev can be moved. There must be

nothing dangerous in the expression prior tov, and there must be no dangerous statements betweenv and

its definition. The only non-dangerous statements are variable declarations and assignments involving non-

dangerous subexpressions. It returns the definition ofv if found, andε otherwise.

IsMovable(e) = e′

if e = v,

Defs(v) = {ev = ASSIGN(v, e′)},

Uses(v) = {e},

NothingBefore(e),

s = the first StatementList enclosinge,

s = {. . . , sj−1, ev, sj+1, . . . , sk−1, s, sk+1, . . .}

∀i ∈ [j + 1, . . . , k − 1] : si = VARDECL(_), or

si = ASSIGN(e1, e2), and¬IsDangerous(e1), and¬IsDangerous(e2)

IsMovable(e) = ε

In the rewriter itself, we look for an expression or statement with a movable subexpression. We move

applicable subexpressions last-to-first, so that the moved expressions do not block further unflattenings.

Because of the systematic way flattening has been performed, this works most of the time.

SingleUse[[X(e1, . . . , en)]] ⇒ X(e1, . . . , ej−1, ej → e′j , ej+1, . . . , en)

if ∃j ∈ [1 . . . n] : ∀i ∈ [j + 1 . . . n] : IsMovableei = ε,

∀i ∈ [1 . . . j − 1] : ¬IsDangerousei,

IsMovable(ej). Defs(ej) = {ev = ASSIGN(v, e′)},

ev → ε

Figure 6.19 shows how the SingleUse rewriter works by unflattening each expression last-to-first. To

avoid blocking each other, the last argument tooverlap is unflattened first. Onceoverlap cannot be

further unflattened itself, it can be moved into the call toprintln . Notice that as soon as SingleUse

has been applied, the other rewriters, except UnusedDecl, are no longer safe to apply, as they assume full

flattening.
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final java.io.PrintStream flatten_0;
flatten_0 = java.lang.System.out;
final java.lang.String flatten_1;
flatten_1 = argv[0];
final java.lang.String flatten_2;
flatten_2 = argv[1];
final int flatten_3;
flatten_3 = this.overlap(flatten_1, flatten_2);
flatten_0.println(flatten_3);

(a) Before SingleUse

final java.io.PrintStream flatten_0;
flatten_0 = java.lang.System.out;
final java.lang.String flatten_1;
flatten_1 = argv[0];
final java.lang.String flatten_2;
final int flatten_3;
flatten_3 = this.overlap(flatten_1, argv[1]);
flatten_0.println(flatten_3);

(b) The first SingleUse unflattens the last argument tooverlap

final java.io.PrintStream flatten_0;
final java.lang.String flatten_1;
final java.lang.String flatten_2;
final int flatten_3;
java.lang.System.out.println(this.overlap(argv[0], argv[1]));

(c) After three more applications, the original expression is reformed

java.lang.System.out.println(this.overlap(argv[0], argv[1]));

(d) An application of UnusedDecl removes the extraneous declarations

Figure 6.19: Unflattening of nested function calls

6.6.2 WhileIf

The WhileIf rewriter attempts to undo the normalization of while loops. Since the condition in the while

loop must be flattened, but the flattened version is not an expression, the condition must be moved into the

loop, in the form of an if-break construct, and the while condition becomes the constanttrue . This rewriter

attempts to find this pattern and turn it back into a while loop. It requires the test in the if-statement to be

completely unflattened.

WhileIf [[WHILE(true, STATEMENTS(IF(e, s, break)))]] ⇒ WHILE(e, s)
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Figure 6.20: Selecting rewriting opportunities

6.7 Usage

The rewriting system has some degree of automation built in. Since the code-reducing rewriters are safe

to apply multiple times, we have a fix-point function that applies all the code-reducing rewriters repeatedly

until none of them make any changes. This allows the user to concentrate on the code-expanding rewriters

and their proper application. Automating the application of the code-expanding rewriters is outside the

scope of this dissertation.

We have added a simple graphical user interface to the rewriters using the Java Swing interface. It

allows the user to select where to apply Inlining, and to apply the fix-point iteration of the code-reducing
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public class DotGenOrig {
public static Code makeSumCode() {

Code sumcode = Constructor.integerConstant(0);
System.out.println(sumcode);
for (int i = 1; i < 10; i++) {

sumcode = Constructor.binOp(6, sumcode,
Constructor.constant(i));

}
return sumcode;

}
}

Figure 6.21: A stripped-down dot-product generator

rewriters. For debugging purposes, it also allows doing a sanity check on the AST structure. Additionally,

a command-line interface running simultaneously allows more fine-grained interaction and examination of

the AST.

Figure 6.20 shows the user interface in use, just after an inlining has been performed. Method invo-

cations are underlined, and the user can click them to apply inlining. Pressing “Cleanup” will start the

code-reducing process that will hopefully remove most of the clutter added by the inlining rewriter.

6.8 Evaluation

As seen in section 5.4, even the comprehensive set of rewriters described above cannot deal effectively with

the unknowns encountered in staged code. In this section, we assess some problems that limit the viability

of the rewriting approach.

6.8.1 Problems Inherent to the Rewriters

A number of problems have turned up during our tests that show limitations in what a rewriting system can

do. Figure 6.21 shows a stripped-down version of the dot-product generator of section 4.3.1. It produces

code that sums the integers from 0 to 9. This simple program shows a number of problems that can be

expected to appear in any attempt at rewriting except for the most trivial.

After inlining binOp andconstant and further methods in them, and reducing the results with the

rewriters, we end up with the code shown in figure 6.22. We can now see some problems that block further

rewriting:
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public class DotGenOrig {
public static Code makeSumCode() {

Code sumcode = Constructor.integerConstant(0);
System.out.println(sumcode);
int i = 1;
while (true) {

if (!(i<10)) break;
final int gen8857_constval = i;
final Code gen8859_flatten_35;
gen8859_flatten_35 = new Code() {

public ClosedCode eval(Environment env) {
return new ClosedCode(Instr.genConst(gen8857_constval), env,

Type.int_type, ConstVal.make(gen8857_constval));
}

};
final Code gen8858_c1 = sumcode;
sumcode = new Code() {

public ClosedCode evalInAdd(Environment env) {
final ClosedCode cp1 = gen8858_c1.evalInAdd(env);
Environment gen8861_env = env;
final Instr gen8861_flatten_30 = Instr.genConst(gen8857_constval);
final Type gen8861_flatten_31 = Type.int_type;
final ConstVal gen8861_flatten_32 = ConstVal.make(gen8857_constval);
final ClosedCode gen8861_flatten_33;
gen8861_flatten_33 = new ClosedCode

(gen8861_flatten_30, gen8861_env, gen8861_flatten_31, gen8861_flatten_32);
if (cp1.isConstant()&&(gen8861_flatten_32!=null)) {

final ConstVal c = cp1.constantValue().mathBinOp(6, gen8861_flatten_33.constantValue());
return new ClosedCode(c.genLoadCode(), env, c.getType(), c);

} else {
if (cp1.type.isObjectType("java/lang/StringBuffer")) {

final ClosedCode str2 = Constructor.makeStringValue(gen8861_flatten_33);
return new ClosedCode(cp1.bytecode.append(str2.bytecode), env, cp1.type);

} else {
if (cp1.type.isObjectType("java/lang/String")||

gen8861_flatten_31.isObjectType("java/lang/String")) {
final ClosedCode str1 = Constructor.makeStringValue(cp1);
final ClosedCode str2 = Constructor.makeStringValue(gen8861_flatten_33);
return new ClosedCode

(Instr.genNew("java/lang/StringBuffer").addDup(1, 0)
.addInvokenonvirtual("java/lang/StringBuffer", " ", new MethodType(Type.void_type))
.append(str1.bytecode).append(str2.bytecode), env, Type.stringbuffer_type);

}
}

}
final Type t = cp1.type.lub(gen8861_flatten_31);
return new ClosedCode(cp1.bytecode.addConvert(cp1.type, t).append(gen8861_flatten_30)

.addConvert(gen8861_flatten_31, t).addMath(6, t), env, t);
}
public ClosedCode eval(Environment env) {

final ClosedCode cp = this.evalInAdd(env);
if (cp.type.isObjectType("java/lang/StringBuffer")) {

return new ClosedCode(cp.bytecode.addInvokevirtual("java/lang/StringBuffer",
"toString", new MethodType(Type.string_type)),

env, Type.string_type);
} else return cp;

}
};
i++;

}
return sumcode;

}
}

Figure 6.22: The stripped-down dot-product generator after several inlinings and reductions (irrelevant
method definitions removed)

134



• A key variable,sumcode , has multiple possible definitions. It can either be defined by the initial-

ization step or by the previous iteration step. Thus, we cannot inlinegen_8858_c1 , leaving behind

a large amount of irreducible inlined code that will only serve to limit optimization in the run-time

system. Even loop unrolling would not help, as there would still be two class definitions with different

free variables.

• The call toConstval.make could be inlined, but becausegen8857_constval is the variable

i , a number of further reductions in the inlined code are not possible.

• Even if theConstval.make call could be reduced so we can resolvegen8861_flatten_32

!= null , it would turn out to be true, becausei is the constant within the loop. That would leave

cp1.isConstant() as the condition, so as long ascp1 is unresolved, we cannot get rid of the

first if branch.

• Without knowing the type ofcp1 , we cannot remove the code that handles the possibility of this

addition being a string concatenation.

Other tests point out that since the environment is passed through every combinator, any combinator that

cannot be sufficiently reduced will block the propagation of the environment. If this happens, even locally

defined variables cannot be found in the environment, greatly reducing the potential for optimizations.

As mentioned in 6.2.1, type lookup in Java is somewhat complex. Even with a working type lookup

system, there are some types, fields and methods that cannot be found, namely those that are being defined

at run time. To be able to understand these, we would have to provide a description of the classes being

generated. Even in the cases where class definitions are simple enough to be understood at compile time, it

would be impractical to discover and process those extra definitions. In many cases, members or class names

are being generated as part of the run-time code generation process, and so cannot be known at compile time

at all.

6.8.2 Functional Style Java

Larry Wall is quoted as saying “Real programmers can write assembly code in any language”. This implies

that no matter how many modern features a language has, it is possible to entirely avoid using them in favor

of an old-fashioned assembly-like style. The result is usually inefficient and unmaintainable.
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In a similar fashion, the attempt to use a rewriting system to optimize Java encourages a certain style of

programming more amenable to rewriting, namely functional programming style. This is expressed in an

avoidance of side-effects, the use of tuple-like classes to carry information, the use of “function objects”,

and a tendency to make methods final, static and public, to allow maximum optimization.

While such a style is richly rewarded in highly functional languages, it is stifling in Java, as the language

syntax and libraries are ill suited for it. Furthermore, the compilers and virtual machines, not expecting

wide-spread use of function objects, tail-recursive methods and final fields, do not perform optimizations

on them that would be natural in compilers for functional programming languages. This style also restricts

the use of some of the features of Java that could otherwise be of help, such as method overriding, field

updating, and the standard data structures.

The functional style best handled by the rewriters fits well with the combinators, as they are also based

on concepts more frequently found in functional languages. However, more liberal use of objects have also

been helpful in implementing several parts of the system. This suggests that using a functional language

with objects, such as OCaml, may yield good results.

6.9 Conclusion

As part of our investigation of run-time code generation using compositional techniques, we have designed

and implemented a rewrite system that performs optimizations on Java source code. Based on a normal-

ization of AST structures, three layers of program analysis and a number of simple rewrite rules, we can

perform aggressive optimizations on any Java code. By explotiing the compositional nature of Jumbo, we

have been able to perform significant reductions of code generators. This shows that rewrite systems can be

used to perform optimization, and that compositional code generators are particularly amenable to aggres-

sive compile-time optimization.

The rewriters do not achieve their full potential on the Jumbo code generators due to limited type infor-

mation and problems in passing environments through unexpandable methods. The type information may

be made available through subclassing the Code type to indicate the required type of expressions, possibly

using the generics system of Java 1.5. The environment problem can be addressed by noting that most com-

binators pass the environment through them unchanged. If this fact can be made available to the rewriters,

significantly more reductions of the code generators should possible.
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Comparing the task of making the three analyses in the rewriter system with the equivalent analyses

on Java byte-code in the author’s Master’s thesis[10], in most areas it is easier to analyze Java source. In

particular, the fact that loops and switch constructs are explicit rather than built out of conditionals and gotos

makes loop handling much easier. On the other hand, inner classes are difficult to handle at the source level,

while they are compiled down to ordinary classes in Java byte-code. Java byte-code is in flattened form

already, but the stack elements need to be handled. It is worth noting that the Soot system[87], which also

operates on Java byte-code, transforms it into an internal form where loops and switches are explicit and

stack handling is abstracted away.

The use of a set of normalizers to bring Java source trees towards a normal form that has less syntactic

sugar could be useful in other systems doing transformations on Java source code. While some redundant

ways of expressing a programming idiom can be useful for the programmer6, they complicate automatic

transformations of source code. The fewer ways a particular action can be performed, the fewer cases the

transformation system has to deal with. This normalizing process, as well as the flow and use-def analyses,

could be useful in a number of other settings, as they do not depend on the code being in any particular style.

6Indeed, it forms one of the central tenets of Perl: “There is more than one way to do it.”
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Chapter 7

Conclusion

In this dissertation, we have shown the usefulness of distributed run-time code generation. Through the

implementation of Jumbo, a compiler for a code-generating version of Java, we have shown that run-time

code generation can give a speedup of several factors, and in some cases up to an order of magnitude.

Additionally, because code fragments are distributed in binary form, the system can be used to distribute

code without disclosing the source, while retaining efficiency.

A system like Jumbo has several potential uses: It can be the basis for high-level domain-specific lan-

guages; it can allow client-server systems to create efficient code that is a mixture of undisclosed client code

and server code; it can be used to codify programming constructs that are otherwise only informally defined;

or it can be used as a generic staging system to increase performance of stageable programs.

Jumbo is implemented using a compositional semantics implemented in Java. To the best of our know-

ledge, Jumbo is the first compositional compiler for a major imperative language. Compositionality has

turned out to be a viable way to structure the compiler, and allowed for a simple implementation.

The use of a compositional semantics makes it almost trivial to produce a run-time compiler that allows

combining code from disparate sources. The code fragments are treated as first-class citizens in Jumbo.

They can be created at any place, passed between functions or between machines, and eventually combined

and compiled to efficient code. This allows a flexibility and power hitherto unseen for imperative run-time

code generation systems. Additionally, compositional semantics means that each code fragment is a self-

contained code generator that can be optimized using standard techniques.
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7.1 Status

We have extended the Java language with a simple syntax for creating and composing code fragments. This

syntax makes it simple for the programmer to create code at run-time. We have implemented the extended

Java in a compositional compiler called Jumbo. The current version of Jumbo supports most of Java 1.2

plus our extensions. Inner classes are supported, though with some limitations; in particular multiple levels

of nesting are not supported. A few esoteric features of Java are not supported either.

Jumbo allows the use of hygienic variables, though for purposes of experimentation it still allows un-

hygienic variables as well. The quotation syntax in some cases requires tagging with syntactic categories

for most antiquotations and some quotations. A full description of the Jumbo extension of Java is given in

chapter 3.

Jumbo is able to compile itself. Jumbo does not attempt to perform any dependency analysis, nor does

it check for all semantic errors in the source. Erroneous Java source can yield illegal byte code, though the

byte-code verifier in the Java virtual machine will catch such code.

Chapter 4 shows several examples of the possible uses of code generation with Jumbo. The examples

show that Jumbo can be used in a wide variety of situations, and that it can give a significant speedup. The

crossover point, where the cost of generating code is recovered by the faster code, is reached for realistic

size problems.

In chapter 5, we consider possible ways of improving the overall performance of the system. We can

optimize either the code we generate or the code generators. Opportunities to optimize the code are severely

limited by time constraints, the fragmented nature of the code involved in code generation, and the mid-level

nature of Java bytecode. We conclude that optimizing the generated code is not a viable way to improve

performance.

In section 5.2, we look at various ways to improve the speed of the code generators. We conclude that

one of the most promising approaches is to take advantage of the regular structure of the code generating

combinators by performing aggressive optimizations. Section 5.4 shows some examples of how these op-

timizations can happen, and also how the same system that performs optimizations can be used as a type

checker. For a simple example, we get a speedup of 26% when using the Kaffe VM, but no speedup in Sun’s

JVM due to the nature of Sun’s HotSpot JIT compiler.

In chapter 6, we describe the details of our optimizers. They are implemented as a rewrite system, using
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a normalization process and three layers of intra-procedural analysis. In a rewriting system, each rewriting

rule is as simple as possible to allow easy reasoning and correctness checking. Repeated application of

the rules can perform significant optimizations. The system performs inlining of methods, loop unrolling

and related local code reduction. Inlining and loop unrolling must currently be selected manually, but the

remaining rewrite rules can be applied automatically.

7.2 Using Java for Code Generation

Most research on run-time code generation has been based on functional languages like ML or Scheme.

We chose to use Java partly because of its widespread usage, and partly because its object model and

bytecode backend offered significant simplification of the code generation system. An earlier similar system

implemented in SML/NJ did not scale as easily, and did not get close to the completeness of Jumbo.

The choice of the same language for both source language and implementation language significantly

simplifies implementation. In particular, it ensures that handling of constant values is the same at compile

time and runtime. Additionally, it allows a hiding of implementation details inside classes, and the use of

function objects to provide varied functionality.

While the implementation was simplified by these choices, certain aspects of the usage were hampered

by Java’s imperative nature. In particular, the differentiation between statements and expressions means that

some idioms from functional languages cannot be directly transferred. For instance, the NESL example in

section 4.3.5 suffers from the lack of a “block expression” that would allow execution of loops inside expres-

sions. Additionally, special syntactic category annotation is required to differentiate the various syntactic

elements, whereas in functional languages, almost everything is an expression.

Developing the rewriters has provided valuable insight into details of the Java language. The normalizers

indicate several places that are problematic for compiler writers, and show that knowing the type of expres-

sions in the code is sufficient to disambiguate these constructs. However, it should be noted that complete

type information cannot be had without knowing the definitions of all superclasses involved. Full normal-

ization yields a simplified Java that would be an excellent target for various kinds of code manipulation.

For future language designers, it is worth noting that one of the biggest problems, both in the rewriters

and in Jumbo itself, has been the overloading of the dot (’.’) operator. If class names had used a different

operator (maybe ’:’ or ’::’), a multitude of problems would have been avoided, as a dot would always mean
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field lookup or method invocation. This seems like a particularly unfortunate choice since only relatively

rarely is the dot operator used in class names in practice, but any tool working with Java must handle dots

correctly.

7.3 Code Generation in the Java Virtual Machine

Assessing the current implementation is complicated by the HotSpot run-time system. As mentioned in

section 4.2, the dynamic optimization system makes it more difficult to get timings that relate to real-world

performance. Additionally, we have experienced some counterintuitive behavior due to HotSpot. In some

cases, we have achieved significant speedups by the use of “outlining”, i.e., extracting loop bodies into

separate methods. This extraction triggers the optimizer and improves running time, whereas most compilers

strive to perform the opposite action, inlining, to improve performance.

These problems suggest the idea of adding the code generation system to the run-time system instead of

having it as Java classes. This would make the system usable only on those virtual machines that support it,

restricting usage to places where we know which virtual machine we will be using. However, it opens up a

number of performance-enhancing possibilities:

• The need to generate and parse Java bytecode would disappear. The code generators could interface

directly with the internal representation of the run-time system.

• The code generators could be built to match the optimizer in the run-time system.

• The code generators could direct the optimizer to the areas most likely to need optimizing.

• The code generators could be written in a language that does not have the interpretive overhead of

Java.

• Several problems that currently contribute a significant portion of the code generators, such as class

lookup and variable allocation, would be handled by the run-time system.

Allowing the code generators to interface directly with the internals of the virtual machine would allow

us to create code in the virtual machines internal format rather than as Java byte codes. Since the verification

process of the JVM is defined on byte codes, it would be possible to create code that has not been verified,
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adding a severe security hole to the Java system. If we want to be able to use code generation outside of a

totally trusted system, we would need to be able to prove, at a level comparable to the current verification

system, that the code generators cannot produce invalid code. Masuhara and Yonezawa explore a type-safe

code generation system in their DynJava system [65], which shows how some of the constraints can be

checked, at the price of a less appealing syntax.

7.4 Future Research

The use of compositional semantics for code composition and generation has proven viable, and further

research in this direction could be warranted. Below are some possible directions such research could take.

The idea of using code fragments in binary form to allow distribution of code that cannot be easily

understood by the reader should be further investigated. There are security aspects to consider, for instance

how to avoid code fragments doing more than they were supposed to. Indeed something as simple as a

denial-of-service attack through infinite loops may need to be prevented. Further uses of the system should

also be considered, in particular the possibilities of creating a client-server exchange system where the

client and the server cooperate on building efficient code without either being tied to a particular internal

representation.

The type system of Java has been one of the main roadblocks of the rewriting system, and it would be

worthwhile to consider a system with explicit types. The DynJava system[65] shows one way to do this,

though at the loss of the possibility of creating new types at run time. If a usable type system for the quoted

code can be designed, it may allow much faster code generation through either a more powerful rewriting

system or a template-based code generation system.

Java 1.2 added inner classes with variable capture. Java 1.5 adds generic types, a feature long known

in the functional language community as polymorphic types. Thus, there is certainly an influence on Java

development from functional languages. Since most research on staged compilation has been done in func-

tional languages, one could consider what other features could be added to Java to make it more amenable to

code generation. In the case of Jumbo, a tuple-like class that allows fast copying with update of final fields

would significantly improve the environment handling.

The rewriting system may also be useful for other purposes. In particular the normalizing rewriters can

be helpful for any project that manipulates Java code. The analyses might be used for optimization systems
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or for binding-time analysis for a partial evaluation system.

Further work on optimizing the code generators could be valuable. The possibility of using general-

purpose optimizers or partial evaluators to optimize the code generation for each code fragment is unique to

Jumbo and should be explored. The rewriting system may be expandable to avoid the current roadblock and

to perform more inlining and more powerful analyses.

A template-based code generation system similar to Tempo or BCS might faster than our system. How-

ever, it is unclear how templates can be implemented in a compositional manner to allow code from different

sources to be combined. This is an area that merits contemplation.

The anonymous database system points to interesting possibilities for using code generation in database

systems. The motivating example in [45] is a code generator for joins. Since joins are the single most

time-consuming part of databases, there may be ways to significantly improve database speed by using code

generation to create highly optimized join code.

An interesting possibility for future research is to implement a Jumbo-like system for OCaml[52, 51, 68],

an ML-like language with object-oriented features. It combines the light-weight and expression-based syn-

tax of functional languages with object-oriented features that simplify the internal structures. Additionally,

it has a simple bytecode format, but can also be compiled directly to efficient machine code.

7.5 Concluding Remarks

We have shown that it is viable to use compositional semantics to make a run-time code generation system

for Java. This system not only allows for specialization with regards to run-time invariants, but also allows

the transmission of code-generators for the purpose of exchanging code fragments in an opaque manner.

This allows efficient code to be generated at a remote site without requiring access to source code, query

terms or other sensitive information.

We have also shoown that a rewriting system can be used to do aggressive general-purpose optimization

of Java. By applying the rewriting system to code generators, we have also shown that the compositional

nature of Jumbo allow static optimization of the code generators. Thus, despite the fact that we allow code

to be created in separate sources, the fact that our code fragments carry their meaning with the makes it

possible to perform static optimizations on them.
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As seen in section 5.2, there are many ways in which the compilation process can be improved, ranging

from partial evaluation methods to embedding the compiler in the run-time system. It is not yet clear which

of the proposed methods would yield the most benefit. While embedding the compiler has the greatest

potential for speed improvement, it would not be as portable as the current Java implementation. Increasing

compilation speed should be the main goal of future research.
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