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Introduction

Java is unquestionably a success. In the space of less than ten years, it has become

widely used, widely supported, and widely studied academically. While Java in-

troduced no truly novel ideas, it packaged many good ideas in a well-engineered

language system. Given the ubiquity of Java, it is particularly important that Java

programs execute quickly in a range of environments. In particular, the initial suc-

cess of Java was as a language for mobile code, namely in web browsers. Here, the

machine-independence and network distribution of Java makes the implementation

of an environment to execute Java programs quickly non-trivial.

In its network-portable form, Java programs are packaged as .class files, in

which programs are compiled into a collection of files, each representing a single

class. The executable code of a class’s methods is represented as the bytecodes

of a stack-based virtual machine, called the Java Virtual Machine (JVM). When

the class files arrive on the client machine, several approaches can be taken to

execute the program. One approach is to interpret the bytecodes. This approach

is the simplest to implement, but suffers from mediocre performance. Another

approach is to translate the bytecodes into the native machine code of the client

machine. This approach — known as “just-in-time,” or “JIT” compilations — is

now routinely used to improve the performance of Java programs.

The implementation of the translation approach presents many choices. A

simple mapping of bytecodes into fixed sequences of machine code is relatively

straight-forward to implement, but exploits little of the potential benefit of dealing

directly with machine dependent code, such as using machine registers instead of

the stack. A more complex approach treats the bytecodes much as a batch com-

piler treats its intermediate representation (IR). This IR is analyzed, and optimiz-

ing transformations are performed on it, eventually producing machine code that

is executed by the hardware. This approach yields the best execution time for the

generated machine code, but there is a high cost. First, optimizing compilers are

complicated and expensive to implement, and a compiler embedded in a JVM is no

different. Second, there is a run-time cost for the compilation activity. Many anal-

yses have super-linear cost in time and/or space. Also, more sophisticated analyses

require more sophisticated intermediate representations, which add an additional

linear overhead over simpler representations, both in creation and in manipulation.

This raises the question: “Can JVMs execute Java programs quickly without

1
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an optimizing compiler?” The answer to this question is “no”. Another question is:

“Can JVMs execute Java programs quickly without an optimizing compiler in the

VM?” The answer to this question is “yes”. This surprising answer arises from the

observation that many machine-dependent optimizations rely on expensive analy-

ses that are primarily machine-independent.

This thesis describes a particular set of optimizations that show a division of

labor between machine-independent and machine-dependent parts. In particular,

we show optimizations which demonstrate a phenomenon we call “super-linear

analysis and linear exploitation.” The super-linear analysis is performed off-line in

machine-independent fashion. The linear exploitation is machine-dependent and

is performed in the JVM. By using this division, we can achieve the effects of an

optimizing compiler with essentially no run-time cost.

We realize the division of labor in the following way. The Java .class file for-

mat permits the addition of optional attributes. We use these optional attributes to

annotate the machine-independent bytecodes with the distillation of information

from an optimizing compiler. These annotations are used by an extended JVM to

linearly exploit this optimization information in a machine dependent fashion.

The constraints of the network-portable, or mobile code form, drive our re-

search. In Figure 1.1, we see the traditional compilation environment. The source

 Source Compiler Object code Target
Machine

Figure 1.1: Traditional Compilation Environment

file is the input to the compiler which produces object code for a particular target

machine. The compiler is unconstrained in the amount of time that it may spend

in performing the compilation process, performing analysis and optimization for

as long as necessary. The target machine is known, so the compiler will perform

machine-dependent optimizations to maximize the speed of the object code on the

target machine.

Compiler Executable
code

Target
Machine

Figure 1.2: Interactive Compilation Environment

In an interactive programming environment, as illustrated in Figure 1.2, the

situation is slightly different. The user enters programs interactively and demands

2
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good interactive response. The latency — the time from when the user enters the

code to when it executes — must be minimized to obtain interactive responsive-

ness. The compiler produces executable code, but must do it quickly. The target

machine is known, so machine-dependent optimization can be performed. Further,

profile information is readily available, and may be used to guide compilation.

 Source
Source

Compiler
 IR Server

request code 
from server

 Client JIT
Compiler

Executable
code

Target
Machine

Figure 1.3: Mobile Code Compilation Environment

The mobile code environment, which we are concerned with, is shown in Fig-

ure 1.3. In this environment, there is a server that compiles source code into an

intermediate form. This intermediate form can then be delivered on demand to a

mobile client across a network. The compilation to the intermediate form is uncon-

strained in the amount of time that it can use. However, it does not know what the

target machine will be and therefore cannot do any machine dependent optimiza-

tions. The intermediate form is also constrained in its size, as it will be transmitted

across a network connection, while the user waits. The client in a mobile code en-

vironment has a similar model to the interactive programming environment. There

is a compiler from intermediate form into machine code in the mobile client. This

compiler also must work quickly to maintain interactive responsiveness. The Java

VM is one instance of this mobile code model. Our annotations are added by the

compiler in the server and exploited by the compiler in the client.

We demonstrate the usefulness of this annotation-based approach to virtual-

machine-based mobile code by examining annotations related to the efficient ex-

ploitation of registers. The annotations which we have developed are:

� register assignment

� register spilling

� copies

These annotations allow programs for a stack-based abstract machine to be effi-

ciently executed on a register-based machine.

3
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We show the effectiveness of this approach by showing information gathered

from standard Java benchmark suite, the SPECJVM, [13] where reductions in load

and store instructions generated range from 7% to 18% when these annotations are

used.

Chapter 2 describes in more detail related work on virtual machine implemen-

tation and compiler optimizations. Chapter 3 describes in detail the annotations

that we have investigated. We take up the topic of how well the annotations per-

form in Chapter 4. We continue by discussing further extensions of this work in

Chapter 5. We conclude the main part of the thesis in Chapter 6 with discussion of

the contributions of this research. In the appendix, we give details on the exact VR

annotations for each bytecode.

4
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Related Work

Mobile execution environments such as Java’s present unique challenges and op-

portunities. We have seen a hint of that in Figure 1.3 and its accompanying de-

scription. These challenges and opportunities can be partially addressed by draw-

ing on relevant prior work. In this chapter we will discuss the following areas

of related work. First, we will discuss virtual machines. Then we will exam-

ine compiler optimizations, in particular the division of labor within a compiler

between machine-independent and machine-dependent optimizations and also the

problem of register allocation. Next we will discuss JIT compilation, focusing on

the tradeoff between complex analysis and interactive response. We conclude by

summarizing and foreshadowing our research by contrasting machine-independent

analysis with machine-dependent transformation.

2.1 Virtual Machines

A virtual machine is a software structuring technique where programs are ex-

pressed in a form that is independent of any particular hardware and which is not

directly executable by a machine. This form is at a low-level of abstraction, consist-

ing of sequences of primitive instructions which are close to a machine language. A

common execution strategy for these primitive instructions is interpretation, where

the instruction is read from memory, dispatched to an appropriate piece of the in-

terpreter code, and executed, the interpreter repeating the “fetch-dispatch-execute”

cycle until the program is finished executing.

2.1.1 Rationale for Virtual Machines

Virtual machines are used for various reasons. In the case of Java and UCSD Pas-

cal, they are used to achieve portability and compactness. Java requires compact-

ness to minimize the network transmission time, whereas UCSD Pascal required

compactness to fit on the limited memory machines of the late 1970s era. Virtual

machines are used in interactive systems because VM code can be generated more

quickly than machine code.

The use of virtual machines dates back to the early days of computing, when

IBM used a microcode translation system to implement the IBM 1401 instruction

set on a completely different underlying hardware architecture, the IBM/360. The

5
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ability to interpret programs originally written for the 1401 allowed IBM’s cus-

tomers to preserve their investment in software, while allowing IBM to explore

and deploy different implementations of the IBM/360 instruction set with higher

performance for certain classes of programs.

Today, the term “virtual machine” is generally used to describe instruction sets

specifically designed as portability bases—a contract between programs written in

a source language and the hardware that will eventually interpret it. This meaning

first appeared in the 1970’s in the Smalltalk and UCSD Pascal P-code systems,

and has been popularized in the 1990’s with the Java virtual machine. (The term

abstract machine is used synonymously, primarily in the logic programming liter-

ature.)

Our research is focused on implementation techniques for virtual machines, not

virtual machine design. The common design element of all of the virtual machines

to be discussed is that the instructions follow a “bytecode” design. In a bytecode

design, the instruction encoding has the format of an opcode followed by zero

or more operands. These operands are references into a table or to offsets into a

run-time stack. This is in contrast to tree- or graph-based systems, which will not

be discussed further.[16] In this chapter, we sketch the implementation techniques

used in Smalltalk, Self, and Java, emphasizing the transition away from repeated

re-interpretation of the VM instructions to execution by compilation to native code.

Our work falls squarely into the ”compilation to native code” approach. It dif-

fers from the work presented in this chapter primarily in the balance it seeks to

strike: whereas the systems presented here either perform aggressive, traditional

compilation at potentially high cost or perform fast compilation without much op-

timization, our work assumes the core information required during optimization

can be computed off-line but exploited on-line quickly. Subsequent chapters show

how we achieved this balance, and evaluate its performance.

The fundamental problem in implementing virtual machines is that of effi-

ciency. The separation from the target machine that is needed for portability can

prove a detriment to performance.

2.1.2 Virtual Machines and Translators

Before discussing the details of VM implementation with just-in-time compila-

tion, we will cover some of the other uses of virtual machines and translators. One

example of the use of a bytecode virtual machine is a version of the functional

language ML, Objective Caml. [30] Another is Prolog, a logic programming lan-

guage, which was popularized by an innovative VM design, the Warren Abstract

Machine (WAM).[45, 1] Many implementations have been based upon the WAM,

6
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including:

� Aquarius - a hardware based implementation of a WAM-like instruction

set.[43]

� Zephyr-an implementation of an extended Prolog with interoperability with

other languages.[4]

� Chare-an implementation for parallel environments. [35]

Another related thread of work is binary translation, also known as object-code

translation. The goal here is portability of old machine code to new machines. In

these systems, the machine-code of one processor is translated at run-time to the

machine-code of the current processor. Below are some original-to-host pairs.

� Tandem’s Non-stop to MIPS [3]

� Hewlett-Packard’s HP3000 to PA-RISC [7]

� Apple’s Motorola 68000 to PPC [40]

� Digital’s Vax to Alpha [36]

� Transmeta’s Intel x86 to Crusoe VLIW [29]

All of these owe much to the Deutsch/Schiffman Smalltalk-80 VM implementation

technique of translating to machine code, discussed below. Earlier systems that

rehosted machine code relied on hardware and microcode, e.g. IBM 1401 to IBM

360.[6]

Somewhat similar to binary translation is the use of a low-level intermediate

language to hide even lower-level details of the processor. This approach is used in

many traditional batch compilers which target multiple RISC targets. One of the

earliest descriptions of such an approach is the Mahler intermediate language.[44]

This language hides such details as the number of registers and delayed branches.

2.2 Compiler Optimization

Compilers in a traditional compilation environment perform extensive optimiza-

tions to decrease the execution time of the program on the target machine. Here

we discuss the distinction between machine-independent and machine-independent

optimizations, the time complexity of optimizations, and intermediate representa-

tions. We then examine in detail the register allocation optimization, which is the

focus of our research.

7
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2.2.1 Machine-independent and Machine-dependent Optimizations

Compiler optimizations can be divided into two categories: machine-independent

and machine-dependent.

A machine-independent optimization is one that can be performed without

knowledge of the target machine. Such optimizations transform the program in a

way that improves performance without requiring information such as the number

of registers or how the execution of one instruction relies on particular hardware

resources. One common machine-independent optimization is loop-invariant code

motion. This optimization moves code from inside the body of a loop to outside

the body of a loop. The code to be moved is analyzed for any dependencies upon

values that change during the execution of the loop. If no such dependencies ex-

ist, then the code motion is legal. This analysis and transformation do not rely on

information specific to the target machine.

A machine-dependent optimization is one that can be performed only with in-

formation about the target machine. Such optimizations use information about the

resources of the target machine to decide how to transform the code. Such re-

sources might include the number of registers or how instructions are dispatched

across multiple functional units. One common machine-dependent optimization

is register allocation. This optimization assigns values to hardware registers by

analyzing which values are in use at various points in the program and choosing

when and where each value should reside in a register. This optimization requires

knowledge of the number of registers in the machine and any constraints on the

type and size of values that may be placed in each register.

An important point to note is that even machine-dependent transformations will

use machine-independent analyses. For example, a common technique for doing

register allocation uses an analysis to determine which values are used at which

points in the program, called liveness analysis, which is machine-independent. It

also contains a graph-coloring phase based on with a machine-independent graph

representation. This graph contains nodes representing the values of the program

and nodes representing the registers of the target machine, so the process is a mix-

ture of machine-dependent and machine-independent aspects.

2.2.2 Cost of Optimizations

Both machine-independent and machine-dependent optimizations consist of two

parts: the analyses to determine the applicability of the optimization and the trans-

formation to change the code from its current state to an improved state. The

analysis part of optimization is the more expensive of the two. The transformation

of the code is linear in the size of the code to be transformed and involves changes

8
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to simple data structures. The analyses for some optimizations are not linear. For

example, the common optimization strategy used for register allocation is to view

the problem as a variant of graph coloring. [10, 9] The analysis is potentially

O
�
N2 � in the number of values of the program, although it is typically O

�
N lg N �

in practice, which is much more expensive than the corresponding transformation

that changes the code to refer to the assigned physical registers. [9] Another prop-

erty of analyses is that the data structures they build and use are complicated and

therefore, while potentially linear, have a high linear factor. Such analyses include

different varieties of data-flow analysis, which tend to use computations over long

bit-vectors, and other expensive constructions.

2.2.3 Intermediate Representations

Inside an optimizing compiler, code is represented in several forms. The initial

representation is in the form of abstract syntax trees which are built as a result

of lexical and syntactic analysis of the source program. The final representation

of the code in a traditional compilation environment is the machine code for the

target machine. As neither of these representations is suitable for performing op-

timizations, typically another form is used, called an intermediate representation

or IR. These IRs can take many forms, based upon the source language, the target

machine, and the type of optimizations that are performed.

Intermediate forms are mostly machine-independent, for two reasons. First,

an intermediate form can be tailored to the optimizations to be performed. For

example, in our invariant code motion optimization mentioned above, it is useful

to have an IR which represents loops directly as a construct in the IR. Such a loop

representation would be used by many optimizations which need to analyze code

contained in loops.

Second, machine-independent IRs make the compiler useful for more than one

target machine, i.e. for portability. By having the optimizing compiler perform

most of its work on a form that is machine-independent, the effort to add a new

target machine to the compiler is reduced.

As hinted at by the “loop” construct, IRs can be varied and much richer than

the instructions of a virtual machine. The IR can take the form of a graph struc-

ture with edges directly represented as pointers in the compiler’s implementation

language. Such representations are not directly representable in VM bytecodes.

The fundamental problem is that such graph structures are not necessarily directly

executable, i.e. there may not be an explicit starting point or branching instruction

to guide the VM in executing the program as represented by the graph.
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2.2.4 Register Allocation

One of the most important optimizations that a batch compiler can perform is reg-

ister allocation. As mentioned above, register allocation is an optimization that

determines which values should reside in machine registers at every point in the

program. We present a discussion of two different graph-coloring register allo-

cators, continue with a set of heuristics that can be added to the graph-coloring

register allocation algorithms, and conclude with a discussion of another approach

to register allocation. This discussion will describe why each analysis is either

machine-independent or machine-dependent.

We begin by describing the Chaitin graph coloring register allocator, which

forms the basis for our allocator. [10] We will then continue by describing the

Briggs enhancement of the basic Chaitin algorithm. [9] Although our algorithm

most closely resembles the unenhanced Chaitin algorithm, we will see later that

some of our work is based upon ideas from Briggs.

The following definitions are from Muchnick.[32] They will prove useful in

the further discussion of register allocation.

reaches A particular definition (i.e. assignment of a value to a variable) is said to

reach a given point in a procedure if there is an execution path from the defi-

nition to that point such that the variable may have, at that point, the value as-

signed by the definition. Calculating reachability is a machine-independent

analysis that is O
�
N � A � where N is number of basic blocks and A is the num-

ber of back edges in a depth-first search of the control-flow graph. Building

the control-flow graph and finding back-edges is also machine-independent.

du-chain The du-chain (“definition-use chain”) for a variable connects a definition

of that variable to all the uses it may flow to, i.e. reaches. This information

is machine-independent.

web A web consists of a set of definitions and a set of reached uses. Webs are

formed by merging together du-chains that share a use until a fixed point

is reached. A web represents the allocatable object for register allocation.

Building webs is a machine-independent construction.

liveness For a given variable (here, a web) and a given point in the program, live-

ness is a predicate that tells whether there is a use of that variable along

some path from the point to the exit. Calculating liveness is a machine-

independent analysis that is O
�
N � A � where N is number of basic blocks

and A is the maximal number of back edges in the depth-first search of the

control-flow graph.
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live A value is considered live if at a given point in the program, there is a use of

that variable along some path from the point to the exit.

live range A live range consists of the program points where a value is live—it

has been defined and there is at least one subsequent use. A web has an

associated live range which indicates whether or not the web’s value is live

at a particular point in the program.

Chaitin Allocator

Chaitin’s innovation was viewing register allocation as a graph coloring problem.

An interference graph is an undirected graph where each node is a web from the

program and the edges are between webs which are simultaneously live. The goal

is to find a k-coloring of the interference graph, where k is the number of physical

registers. Chaitin’s algorithm uses a heuristic to find a k-coloring for the original

interference graph. If a k-coloring cannot be made using the coloring heuristic (the

simplify step below), then the graph is modified by removing a node and its inci-

dent edges from the graph, thereby “spilling” the web’s value, which relegates the

value to being stored outside of a register. The heuristic then continues, trying to

find a k-coloring for the smaller graph. If a k-coloring is found, then the coloring of

the interference graph indicates which values should be assigned to which physical

registers. This correspondence between physical registers and colors is obtained

by inserting the physical registers in the interference graph in addition to the webs.

Edges connecting all of the physical register nodes to each other are also added,

indicating that a physical register is not equivalent to any other physical register.

When the algorithm finishes, the physical registers will all be assigned a color. A

web will be allocated to the physical register whose color matches its own.

Building the interference graph is a machine-independent operation, as it uses

knowledge about the number and type of registers of the target machine. Building

the interference graph takes O
�
N � E � time, where N is the number of webs and

physical registers and E is the number of interference edges.

Chaitin Allocator Stages The following description of the Chaitin algorithm is

due to Briggs. [9] See Figure 2.1 for the details of the control-flow of Chaitin’s

algorithm.

Renumber Find all the live ranges in a method and construct the webs based

upon whether the live range has been spilled or not. Live ranges are used

to find webs on the first execution of this stage. Subsequent executions may

“renumber” the webs to correspond to the current number of webs that are
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spill code

coalesce

renumber

build

spill costs

simplify

select

Figure 2.1: Chaitin’s Allocation Algorithm

being allocated to registers. Spilling may have occured due to the execution

loop as seen in Figure 2.1

Build Construct the interference graph.

Coalesce Remove unneeded copies. A copy is an instruction whose effect is a

simple assignment of the value of one web to another. That instruction is not

needed if both webs have been assigned the same color.

Spill Costs For every live range, calculate an estimate of the cost of the load and

store instructions that would be required to spill it.

Simplify Repeatedly remove nodes from the interference graph with degree � k.

As each node is removed, place it on a stack. If at any point, no node has

degree � k, then one of them is marked for spilling and removed from the

interference graph.

Select Pop each node from the stack, and insert it back into the interference graph,

giving it a color distinct from its neighbors.

Spill Code Any nodes which were marked for spilling in the Simplify stage have

code generated for loading and storing around the represented live range.

12
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Figure 2.2: Briggs Allocation Algorithm
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Figure 2.3: Simple Graph Requiring Two Colors

Briggs Allocator

The Briggs allocator has a similar structure to the Chaitin allocator, (see Figure

2.2).

One of the primary problems that the Briggs allocator attacks is the inability of

the Chaitin allocator to find a k-coloring for the original graph in certain kinds of

situations. The two problems are as follows:

1. A simple diamond graph (see Figure 2.3) will not receive a 2-coloring, even

though one is possible by inspection. The problem here is that the Chaitin

allocator approximates “find a color for node x” with “degree(x) � k.” This

is a sufficient but not necessary condition.
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2. Lives ranges may be chosen to be spilled non-productively. Spilling is a

decision that cannot be retracted. Therefore, once a live range is spilled, it

remains spilled.

Briggs addresses these two problems of the Chaitin allocator by making modifica-

tions to the basic algorithm. Briggs makes the following changes to two stages:

Simplify Repeatedly remove nodes from the interference graph with degree � k.

As each node is removed, place it on a stack. If at any point, no node has

degree � k, then one is chosen and it is optimistically placed on the stack,

marked for spilling and removed from the interference graph.

Select Pop each node from the stack, and insert it back into the interference graph,

giving it a color distinct from its neighbors. If any nodes are left un-colored,

then the allocator inserts spill code for the corresponding live ranges, re-

builds the interference graph, and tries again.

These two changes allow more graphs to be k-colored, thereby improving the reg-

ister allocation of the underlying code.

Another area in which Briggs improves on the work of Chaitin is by the intro-

duction of aggressive live range splitting. The extent of a live range extends from

its def(s) to its use(s). As a value’s live range may extend across regions where

the value is not accessed, it can be profitable to split a single live range into two

or more pieces, thereby allowing other values an opportunity at the split range’s

registers. We will see in our description of the swap annotation how we use the

ideas behind live range splitting to generate the swap annotation.

Although both Chaitin’s and Briggs’ graph-coloring register-allocators can take

O
�
N2 � time in the worst case, Briggs measured the time complexity as O

�
N lgN � ,

where N is the number of nodes in the interference graph.

Haifa Heuristics

In any register allocation algorithm, a critical decision is which live range to spill

when there is a choice among many. In work done at IBM’s Haifa, Israel facility,

spill candidates are chosen by calculating the cost associated with spilling using

three heuristics and choosing the best of the three.[8] Below are definitions for the
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heuristics:

defwt – cost of a def instruction

cost
�
w � – cost of spilling a web w

depth
�
de f � – loop nest of definition de f

degree
�
w � – degree of web w in interference graph

width
�
I � – number of live ranges at instruction I

cost
�
w ��� defwt � ∑

de f � w
10depth � de f �

h1
�
w ��� cost

�
w �

degree
�
w � 2

area
�
w ��� ∑

I � inst � w �

�
width

�
I �

� 5depth � I � �

h2
�
w ��� cost

�
w �

area
�
w �

� degree
�
w �

h3
�
w ��� cost

�
w �

area
�
w �

� degree
�
w � 2

The goal of these heuristics (h1 � h2 � h3) is to capture both the importance of a partic-

ular value (cost) and to quantify its interference with other values (area and degree).

To better understand the process, here is the pseudocode for their register allocation

algorithm:

for each heuristic hi do

while G is not empty

if there is an X with degree < r then

choose that X with largest degree

delete X

else

choose X with Min hi
�
X �

add X to spill_list

end

restore G

end for

choose heuristic hi with smallest Cost(spill_list)

In addition to using this algorithm, the heuristics can be substituted into the simplify

step of Chaitin’s algorithm for choosing which web to spill.

These heuristics are machine-dependent, as they rely on defwt, which is the

cost of a machine instruction, and on cost which is the cost of spilling a web. The

heuristics have time complexity of O
�
E lgN � — E is the number of edges and N is
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the number of basic blocks, derived from the need to find loops in calculating cost.

Linear Scan Allocator

Other register allocators exist which are not based upon the graph-coloring model.

As we will see below, the linear scan register allocator is chosen by some JVM

implementors. The linear scan allocator is a good choice, because it is fast and

reasonably effective.

As described by Poletto and Sarkar, the linear scan register allocation algo-

rithm takes as input the number of registers to be allocated and the live interval for

every variable. A strict ordering is imposed on the pseudo-instructions of the inter-

mediate form.[34] A live interval is a conservative estimate of the corresponding

live range, expressed as an interval over the ordering of the intermediate form.

The algorithm proceeds by taking each live interval in increasing start-time

order and considering the number of active live ranges at that program point. If

there are not enough registers to contain the current set of live intervals, then the

interval whose endpoint is furthest away is heuristically chosen to be spilled.

This algorithm works in linear time in the number of live intervals, assuming

that the number of registers is fixed.1 It also achieves results comparable to that of

a graph-coloring based register allocator. The algorithm is machine-dependent, as

it relies on knowing the number of registers the target machine has. It also relies

on having performed liveness analysis.

2.3 JIT compilation

One of the mostly widely used solutions to the efficiency problem of virtual ma-

chines is to use a translator of the virtual machine’s instructions to the machine

code of the target machine. This technique, recently labeled as “just-in-time” or

JIT compilation, can substantially improve performance as compared to an inter-

preted approach.

We begin by describing one of the oldest examples of a bytecoded VM which

uses just-in-time compilation, the Xerox PARC Smalltalk system. We then discuss

another virtual machine’s dynamic compilation system, that of the Self system.

We then proceed to discuss some of the current implementations of the Java virtual

machine which use dynamic, optimized code-generation technology. The previous

systems are then used to guide a discussion of the trade-offs in JIT compilation. We

will also make a comparison of VM instructions (bytecode) and the intermediate

representations (IR) used in traditional compilation environments.

1The algorithm is O � n lnk � where n is the number of live ranges and k is the number of registers.
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2.3.1 Smalltalk

The Smalltalk programming language was developed between 1971 and 1980 at

the Xerox Palo Alto Research Center (Xerox PARC). Co-developed with many

innovative features of modern computer usage such as laser printers, local-area

networking, and the graphical-user-interface, the Smalltalk system also helped to

pioneer object-oriented programming languages.

Several versions of the Smalltalk system were designed and implemented.

Smalltalk-76

The Smalltalk-76 system was implemented using a bytecode architecture on the

Dorado.[25] The Dorado was an $80,000 single-user micro-coded minicomputer.

There are two innovative implementation techniques of the Smalltalk-76 system

we are interested in: compact object code and message handling.

Compact Object Code The machine micro-architecture of the Dorado is that of

a writable microcode store. The macro-architecture consists of a compact, high-

level bytecode of Smalltalk specific instructions. The bytecode consists of a small

variety of loads, message sends, jumps, and control statements (return, pop, and

store). An escape bytecode also exists for doing such things as extended address

loads. Here we see an example of a hybrid of machine code and microcode. Most

bytecodes are handled by microcode, while the escape bytecode causes machine

code instructions to be executed.

Message Handling To achieve performance while maintaining the “everything

is an object” paradigm, certain message sends are implemented as bytecodes. For

example, the “+” message is assigned a special bytecode. The receiver and argu-

ment are both checked to insure they are instances of SmallInteger, and if not,

normal message dispatch is done. This is an example of software based bytecode

specialization.

Smalltalk-80

Smalltalk-80 is a microprocessor based implementation of the Smalltalk-80 sys-

tem, described by Deutsch and Schiffman.[14] The three main innovations in this

system are:

� dynamic bytecode to machine code translation

� caching to reduce the cost of method lookups
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Hardware Software
type checking tagged integers 26%

two-tone instructions 16%
interpretation byte insert/extract 33% compiling to RISC 100%

instructions
procedure register windows 46% in-line cache 33%
calls fast shuffle 11%
storage direct pointers 20%
management generation ?%

scavenging
Total 132% 153%
Improvement

Table 2.1: SOAR Performance Contributions: Performance measurements are per-
centage speed increase when features are considered in isolation. For example, a
system with tagged integers performs 26% faster than a system that is identical ex-
cept for the absence of tagged integers. Total improvement is for all features being
present.

� multiple representations of contexts (activation records)

This VM implementation was the first to use translation to machine code without

hardware assists. The machine code translator was largely macro driven, with each

bytecode translating into a fixed sequence of machine code instructions. The stack

nature of bytecodes was emulated by using the machine’s memory in a stack fash-

ion. To improve performance, the machine code translator generated code to keep

the top element of the execution stack in a register. Another performance enhanc-

ing technique was to in-line the generated code rather than treating each bytecode

as a method call and generating a jump-to-subroutine sequence. The machine-code

was re-generated as necessary and was not paged-out.

SOAR

One of the more influential pieces of research work involving the compilation of

bytecodes into machine code was the “Smalltalk On A RISC” (SOAR) project at

the University of California at Berkeley.[33] Building on the success of machine

code generation in the Smalltalk-80 VM implementation, this research group per-

formed a complete system design process incorporating RISC processor design as

well as run-time system software development. Table 2.1, adapted from Ungar’s

Ph.D. dissertation, summarizes the contribution of various components to the over-

all performance of the system.[42]

As can be seen by the summary row, both software and hardware features con-

tributed significantly to the performance of SOAR. Here is a brief description of
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hardware and software features respectively. First, the hardware.

tagged integers special opcodes for doing arithmetic operations on tagged quan-

tities

two-tone instructions the encoding of an instruction determines whether or not it

is constrained by tags.

byte insert/extract instructions needed due to the absence of byte-addressing.

register windows large, on-chip register files, arranged as a set of overlapping

windows. Calls and returns manipulate a base-register into the register file,

rather than manipulating the in-memory stack.

fast shuffle encoding the entire address for a call in the instruction itself, allowing

for one-cycle calls.

Here we see an example of the direct hardware execution model of VM implemen-

tation.

Second, the software.

compiling to RISC compilation of Smalltalk-80 bytecodes to SOAR machine-

code. As the system described in Ungar’s thesis is a simulator, this was

done offline.

in-line cache in-line method lookup caches, where the results of searching for the

implementor of a polymorphic message send is cached in line, from Schiff-

man and Deutsch.[14]

direct pointers removal of the object table, so that object references are the ad-

dresses of the objects they refer to.

generation scavenging a garbage-collection scheme that creates new objects in

a “new” generation and tenures those objects from one generation that are

live into the next older generation. (This line in Table 2.1 is marked with

a question mark, as the algorithm had not been implemented at the time of

Ungar’s thesis.)

Due to the unavailability of the SOAR chip, a static translation process was used to

convert a normal Smalltalk image into one with the bytecodes translated to SOAR

machine code. This machine-coded image was then run through a SOAR simu-

lator to obtain the performance numbers above. This work is most influential in

two ways. First is the introduction of register windows, which can be seen in the

SPARC and EPIC architectures. Second is the generational garbage-collector.
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Other Smalltalk Implementations

Software implementation techniques other than direct machine code generation

have been used for Smalltalk VMs. Most notable is the Typed Smalltalk work done

at the University of Illinois by Ralph Johnson and his students. In this work, source

is either translated into bytecodes and interpreted or translated into more traditional

compilation environment internal representations, optimized, and translated into

machine code.[27] They solve the problem of maintaining interactive response by

having optimized compilation being done on explicit request by the programmer

and/or by a background thread when the system is idle. They achieve portability by

having a framework that manages machine-dependencies. Although the decision

to apply optimizations is under direct programmer control, this is really the same

as dynamic optimization. Work was also done to support variations in the run-time

system.[15] This allows the VM implementor to easily experiment with changes in

the run-time structures.

Squeak is another, more recent implementation of Smalltalk.[24] This imple-

mentation follows closely the implementation as documented in the “Blue Book.”

[18] There, the Smalltalk VM, including a bytecode interpreter, is described in

Smalltalk. To gain efficiency, this is typically a normative description of the se-

mantics, with the actual implementation language being assembly or C. In Squeak,

this Smalltalk code is actually used. This code is written in a subset of Smalltalk

which is automatically translated into C and compiled. In addition, a variant of Un-

gar’s generation scavenging garbage collector is used, along with elimination of the

object table by using direct pointers and optimized representation of object headers

to decrease per object storage costs. Although static, the automatic translation of

Smalltalk code into C is similar to dynamic optimization.

2.3.2 Self

Self is a dynamic object-oriented language. Like Smalltalk, Self is highly inte-

grated into its development environment. In his 1995 Ph.D. dissertation, Urs Hölzle

describes the implementation of a Self system.[21] Like the JVM, compiled Self

programs are defined in terms of a set of bytecodes for a virtual machine. However,

in Hölzle’s version of Self, the bytecodes are translated into another intermediate

form after performing high-level optimizations such as type feedback-based inlin-

ing and splitting. The resulting intermediate code is used from there on.

In this Self system, the execution environment provides for dynamic recompi-

lation. A dynamic recompilation system may generate machine code several times

for the same bytecodes. In each recompilation, more optimizations are applied

in generating machine code. For Self, the primary optimization is polymorphic
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in-line caching (PIC). Object-oriented languages have several choices when gen-

erating polymorphic message sends. Languages with a more static nature, such as

C++ and Java, typically use vtables, where each message send is accomplished by

jumping indirectly through a fixed offset into a table of method pointers. More dy-

namic environments like Smalltalk or Self, where compile time and execution are

intermingled, must use “method lookup,” where the actual method to be executed

is searched for at every message send by traversing the inheritance hierarchy. Like

Smalltalk, Self reduces the need for this search by caching the results of a previous

message lookup.

A useful variant of this technique is to inline the called method. One advantage

of inlining the called method is to eliminate the overhead of doing a function call.

However, the biggest win is by increasing the effectiveness of traditional optimiza-

tions.

When a method is inlined, the code for the calling method becomes larger, and

more information about the called method is exposed. The Self compiler can then

perform optimizations on the expanded method, potentially exposing transforma-

tions previously hidden by the message send. Below are the optimizations the Self

system makes and a brief explanation of why they are particularly useful in the

context of inlining:

� copy-propagation – argument(s) from the caller can be directly substituted

as an in the callee, without making a copy.

� dead-code elimination – information exposed by inlining on the values of

expressions used in conditional control-flow can lead to unreachable code

that can be eliminated.

� register allocation – spills of arguments and locals of the caller can be re-

duced.

To perform these optimizations, the Self compiler does a definition/use analysis

and calculates loop nesting. The register allocator used is a mixed allocator, with

local allocation of registers being followed by a global allocation on any remaining

values. Usage counts and loop nesting are used to do the register allocation.

Many of the implementation techniques first explored in Self have made their

way into Java VM implementations, notably, Sun’s HotSpot. [39]

2.3.3 Java

As described in Chapter 1, Java is “hot.” In addition to the reasons outlined, an-

other measure of Java’s importance is the number of commercial entities that have
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produced their own implementations of Java for research and/or commercial pur-

poses. This list includes IBM, Microsoft, Apple, Intel, Compaq (Digital), Sun (of

course!), and Hewlett-Packard. Why did these companies find Java implementa-

tion a worthy endeavor, when other VM designs have failed to take hold? Briefly,

Java is interesting for the following technical reasons.

� “wire” or network format, which allows interoperability across distributed

systems

� verifiability

� concurrency

� breadth of class libraries

� simpler language than C++

We will examine one of the open source VMs, as well as some of the commercial

VMs. We will begin by describing the Java Virtual Machine in isolation of any

particular implementation.

Java Virtual Machine

A Java virtual machine must perform the following tasks:

initializing starting the virtual machine and creating and initializing appropriate

fundamental classes, such as Object, Thread, ThreadGroup, String,

etc.

class loading conversion of a name into a class. The VM searches the class path

and reads the named class from persistent storage into memory. Preliminary

verification of the structure of the .class file is part of this task.

verifying assuring the class meets the constraints defined by the JVM specifica-

tion. [31] The majority of the work of verification is assuring that the Java

bytecodes for each method type-check, and that the operand stack does not

over- or underflow.

native code calling providing access to resources of the host environment. The

virtual machine mediates access to services such as I/O to the executing pro-

gram.

executing the run-time support for language features. Such features include mem-

ory management, thread management, object initialization, error handling,

etc.
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accessing standard class libraries the java.lang and java.io libraries, etc.

The virtual machine mediates access to the standard set of class libraries.

Most importantly, a virtual machine must execute the user’s program! The execu-

tion mechanism for Java code is what most distinguishes one implementation from

another. A JVM with a Just-in-time (JIT) compiler translates the Java bytecode

into machine code for the processor on which the VM is implemented. Kaffe is a

minimal JIT implementation of a JVM. Minimal is used here to describe a JVM

that converts Java bytecodes directly into machine code, without conversion into an

intermediate form or any kind of optimization. As we shall see below, some virtual

machines have quite elaborate optimizing-compiler-like mechanisms for perform-

ing this translation process. Kaffe does not.

Kaffe

The open source virtual machine which we use to implement our work is Kaffe,

from Transvirtual.[41] This VM can be deployed either as an all-interpreted system

or an all-JIT system. The JIT system does a weak local register allocation, and no

other optimizations. This VM build-time decision is a striking example of the VM

implementation choice between strict interpretation and machine code generation.

Other Features Kaffe supports almost any machine and operating system in its

interpreter only mode. There are also a large number of different processors sup-

ported in the all-JIT mode. When possible, Kaffe maps Java threads to native

threads. Due to its targeting to the embedded systems market, Kaffe has fairly

weak support for multi-processor systems in terms of lightweight synchronization

mechanisms. Kaffe uses a rather crude incremental stop-and-copy garbage collec-

tion system. Kaffe does not inline methods. More details of the code generation

process are covered in Section 3.5.1.

HotSpot

Sun’s “Java HotSpotTM performance engine” utilizes dynamic compilation.[39] In

dynamic compilation, increasing levels of optimization are applied to code that is

determined to be performance-critical. This is determined by the run-time behavior

of the program. The first phase of HotSpot’s execution of a particular method is

purely interpretive. As execution proceeds, the next step is to generate native ma-

chine code. With continued execution, HotSpot employs an optimizing compiler

on code that has been determined to be worth the expenditure of effort.

One of the advantages of delaying machine code generation is that profile in-

formation is gathered about the running program. This information, such as caller-
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Figure 2.4: IBM Tokyo JVM Compilation System Flow

callee relationships for virtual method sends and branch direction frequency, can

be used to guide the generation of machine code. In particular, method-inlining

is guided by the caller-callee information. HotSpot makes much use of method-

inlining. First, method-inlining reduces the cost of method invocations. Second,

and most important, method inlining exposes the code of the inlined method to

further optimizations. Because of the dynamic semantics of Java, wherein load-

ing a class may necessitate undoing the previously generated code, HotSpot must

perform dynamic deoptimization. This mainly consists of undoing any inlining,

should subsequent performance measurements indicate the need.

The optimizations that HotSpot performs include dead-code elimination, loop

invariant code hoisting, common-subexpression elimination and constant propaga-

tion. In addition to these language neutral optimizations, it also performs transfor-

mations oriented towards Java programs. These optimizations include null-check

and range-check elimination. In addition, HotSpot uses a global graph-coloring

register allocator.

IBM Tokyo

Another implementation of the Java Virtual Machine is one developed at IBM’s

Tokyo research lab.[37] Their implementation takes a tack typical of commercial

JVMs—initial interpretation of bytecodes followed by an optimizing translation

into machine code for those methods that are frequently executed.

In Figure 2.4, we see the compilation phases of the JVM. Below we will de-

scribe each of the phases in turn. However, as the code scheduling is conventional,

we will not cover it. We take this detailed look to illustrate the optimizations and

supporting analyses that were chosen by its implementors to be useful for a Java

VM implementation. We use this system as an example, rather than HotSpot, since

its optimizations are more fully described.

Flow Analyses The input to the Flow Analyses phase is the normal Java byte

code. This phase does the typical control and data flow analyses, and additionally

transforms the bytecode into an extended form. Instructions for dealing with the
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interior addresses of objects and arrays are added to the normal Java bytecode.

The extended bytecode is used as the input to the remaining phases, until the Code

Scheduling phase.

Method Inlining Unlike Smalltalk, where any message send can be polymor-

phic, Java has specific bytecodes for doing non-polymorphic message sends. Sends

to these methods are evaluated to be potential inlining sites by the IBM Tokyo JVM

using the usual criterion used in more static languages. Such criteria include size

of the method to be inlined, register pressure at the call site, whether the inlined

method contains a loop or the call site is contained in a loop, etc. One area peculiar

to Java is the higher frequency of empty methods. These are generated implicitly

by the Java source compiler for zero-argument object constructors.

For inlining polymorphic message sends, the IBM Tokyo JVM takes advantage

of the fact that a method may be marked “final”, i.e. may not be overridden. Like

the Deutsch-Schiffman inlining, one method is inlined with a check for its validity.

However, the check is against the addresses of the current method and the non-

inlined version of the method that is inlined. These addresses are easily obtained

through the vtable. A similar optimization is used for message sends through an

interface.

Exception Check Elimination There are two types of exception checks that po-

tentially can be eliminated by this phase. The first is null pointer check elimination.

For most processors, the majority of cases are handled by the memory management

subsystem. However, for those bytecodes which may throw the exception, but

which do not actually dereference the pointer, checks may have to be added. One

such bytecode is athrow which should generate an exception if the reference to the

exception object is null. To eliminate the number of these inserted checks, forward

data-flow analysis is done to find all subsequent uses, and the checks are inserted

only if the pointer is used. The second situation for exception check elimination is

for array bounds checks. Here the set of potential array index values is calculated

and propagated forwards and backwards along the data-flow path. Non-constant

changes to the index variable invalidate the index-set. If the analysis shows an

in-bounds set of indices, then the array-bounds check can be omitted.

Common Subexpression Elimination Common subexpression elimination, (or

CSE) is only performed on code contained in loops. This is to focus the limited

optimization time on the code which impacts performance the most. Additionally,

simplified forms of CSE are done, also to save time. Scalar replacement is one of

these. Here, a subscripted variable is replaced with a local variable reference. An-
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other is common effective address generation. This CSE specialization transforms

expressions referencing the middle of an array into a pointer to the interior of the

array. The last CSE specialization is partial redundancy elimination, which is used

to reduce the number of accesses to instance variables. Multiple accesses on the

same execution path are turned into local variable accesses after the first access.

All of these optimizations are tested for loop-invariance and hoisted out of the loop

body if possible.

Loop Versioning The particular variety of loop versioning used by this JVM

is one tailored to languages with exact exception semantics. A loop body may

contain exception checks that could be removed, but only using information known

at run-time. Such loops can be rewritten into two versions of the loop, one with

the exception checks, and one without. Additionally, code is emitted to check the

exception conditions. If the loop will not generate exceptions, then the quicker, no

exception check version is jumped to. Otherwise, the slower version of the loop,

with exception checks, is jumped to. This preserves the exact exception semantics.

Native Code Generation This phase is responsible for register allocation and

generation of processor-specific machine code. Again, analyses are restricted due

to the tight time constraints: “We consider expensive register allocation algorithms,

such as graph-coloring, to be inappropriate, owing to the just-in-time nature of the

JIT compiler.”[37, p. 183] HotSpot amortizes the higher cost of a graph-coloring

register allocator by deferring a global register allocator longer than the IBM Tokyo

JVM does.

Accordingly, a less time-complex register allocation algorithm is used. The

registers are divided into three sets—stack variables, permanent cached local vari-

able, and temporary cached local variables. The physical registers are then dedi-

cated to values in that order. In addition, registers in a particular set are allocated

in a circular fashion, to reduce the potential for instruction scheduling conflicts.

In generating machine code from the extended bytecodes, a set of 80 different

“idioms” are recognized, supplementing the one bytecode � one-or-more machine

instruction translation scheme. These idioms help to mask the inefficiencies of the

stack semantics, in particular the direct stack manipulation bytecodes.

One optimizing transformation not covered by the “idioms” is the generation of

type-inclusion tests. Java has specific bytecodes for doing run-time type checking.

Here, the machine code for the type-inclusion tests are handled in a fashion similar

to inlined methods. If the object reference is null, then execution resumes at the

next bytecode. Otherwise, if the type of the object is the same as the last successful

type-check, then execution resumes at the next bytecode. If neither of the above
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conditions is true, a call to a run-time library routine is called, and if successful, the

object type is recorded, and execution resumes at the next bytecode. If the routine

fails, an exception is thrown.

As stated earlier, the memory subsystem handles many of the possible excep-

tion checks. However, this is not the complete story. When an exception is thrown,

the appropriate exception handler must be found, after which the stack is unwound,

and the exception handler is executed. To reduce overhead, only those methods

that contain an exception handler will have code generated for handling excep-

tions. This is in contrast to some implementations of exception handling where

every method must have code generated for handling the unwinding of the stack

during exception handling. To decrease the likelihood of instruction-cache misses,

exception handlers are moved to the bottom of the method. Because this move-

ment makes a simple mapping of locations to exception handlers difficult, a local

variable is used to keep track of the current record for exception handling informa-

tion. This record is threaded to similar records deeper in the call stack to facilitate

finding the appropriate exception handler.

Summary The focus on performance in VM implementations has been illus-

trated by the foregoing discussion. Specific specialized techniques, such as loop

versioning to maintain exception semantics, and partial inlining of type checks, are

examples of how VM implementations achieve performance while maintaining the

semantics required by the VM design. Further, we have seen careful tailoring of

traditional compiler algorithms to meet the interactive response constraints.

Jalapeño

Another JVM implemented by an IBM research group is the Jalapeño system de-

veloped at IBM’s T.J. Watson Laboratories.[2] It is designed for servers, in partic-

ular those with symmetric multi-processing (SMP.) A novel features of this JVM is

that it is written in Java, except an extremely small kernel of functions written in C

and assembly. This non-Java code includes a C-binding for accessing OS services,

a boot loader, and two signal handlers for software traps and timer interrupts. Like

the compile-only build of the Kaffe system, all Java bytecode is translated into na-

tive code, rather than being interpreted. The compilation system consists of three

different compilers. (The technique of using a language for its own VM implemen-

tation, known as self-hosting, is a common technique. Many implementations of

the Pascal P-system VM did the same.)

Compilers The Jalapeño system has three compilers that convert bytecodes to

machine code. The baseline compiler is used for system bring-up and focuses
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Table 2.2: Relative Performance of Jalapeño vs. IBM Development Kit VM
Compilation Execution

Time Time
IBM-DK Interpreter 4-40

IBM-DK JIT 30-45 1
Jalapeño Baseline 1 2-20

Jalapeño Optimizing 30-45 1

on being transparently correct. The quick compiler is used for situations where

machine code must be generated quickly. It uses no intermediate representation

(IR) but does do copy propagation to remove the stack semantics of Java bytecode.

Somewhat ironically, the quick compiler does have a graph-coloring register allo-

cator, which may be used in addition to a simpler, faster register allocator. The

optimizing compiler is used on those sections of code it is worthwhile to optimize.

It uses multiple intermediate forms, with the “atoms” of each IR being an operator

with an n-tuple of arguments. Each of these representations maintains type infor-

mation. As the compiler is otherwise conventional, it will not be discussed further.

Currently, no comprehensive strategy exists for choosing which compiler to use.

Performance Because important parts of Jalapeño were still under construction

when the article was written, the following performance numbers are preliminary.

The IBM Developer Kit (IBM-DK) compiler was produced by IBM Tokyo, as

reviewed in section 2.3.3. In Table 2.2, we see the relative performance of compi-

lation time and execution time. The compilation time and execution time are not

comparable, as the times were reported only as ratios to the basline system, not in

direct time measures. These numbers are for micro-benchmarks from Symantec.

On the SPEC jvm98 benchmarks, similar results are found. It is important to note

relative amounts of compilation time spent by the Jalapeño baseline and the opti-

mizing version. Here we see the cost of performing optimizations as compared to

a translation to machine-code which does no optimizations.

2.3.4 JIT Compilation Tradeoff

The preceding discussion highlights some of the trade-offs that occur in the mobile

code environment, particularly when using JIT compilation. There is a limit to the

amount of time that can be spent executing optimization algorithms while main-

taining responsiveness, so less costly optimizations are used when available and

expensive ones deferred until necessary. Note, however, that none of the systems

discussed above saw memory footprint as a concern. That becomes an issue in

environments that are tightly constrained in memory. Such JVMs do not have the
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Table 2.3: Comparison of VM Implementations

Language Implementation

�
�

�
�

�
�

�
�

�
�

� H
ar

dw
ar

e

�
�

�
�

�
�

�
�

�
�

� In
te

rp
re

ta
tio

n

�
�

�
�

�
�

�
�

�
�

� C
om

pi
la

tio
n

Smalltalk ST-76 ✓ ✓

ST-80 ✓ ✓

SOAR ✓ ✓

Self Hölzle ✓ ✓

Java Kaffe ✓ ✓

Hot Spot ✓ ✓

IBM Tokyo ✓ ✓

Jalapeño ✓

AJIT ✓

Press Pot ✓

Prolog (WAM) ✓

Aquarius ✓ ✓

Zephyr ✓

Chare ✓

IBM 1401 IBM 360 ✓ ✓

IBM 370 VM/370 ✓

Tandem MIPs ✓ ✓

x86 Crusoe ✓ ✓

memory to store the code for doing optimizations and most interpret the bytecodes.

We have also seen that the Java bytecode, while similar to the intermediate

representation of optimizing compilers, is not sufficient to do many optimizations.

As discussed above, particularly in the discussion of the IBM Tokyo JVM, the

delivered JVM bytecodes are used to create graph-based IRs , and optimizations

are performed on the IRs rather than the bytecodes.

2.4 Summary

Table 2.3 summarizes the VMs discussed in this chapter. The first column indicates

which language is being implemented by the particular VM implementation indi-

cated by the second column. The third column, labeled “Hardware,” is checked if

the VM implementation uses hardware specifically designed for VM implementa-

tion. The fourth column, labeled “Interpretation,” is checked if the VM implemen-

tation uses interpretation to execute the user’s program. The fifth column, labeled

“Compilation” is checked if the VM implementation uses compilation to machine

code to execute the user’s program.
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The systems which employ both interpretation and compilation usually employ

dynamic compilation, i.e. interpreting first with potential compilation later. How-

ever, Kaffe makes this decision when it is built, so that a given implementation

either always interprets or always compiles. We will discuss AJIT, a JVM similar

to ours, in Section 3.7.2. Our system, PressPot, is discussed in Chapter 3. The Tan-

dem to MIPs translation system employs interpretation only when maintaining the

semantics of the input makes compilation too difficult. VM/370 is marked as em-

ploying hardware, as certain hardware “assists” are added to the machine to aid in

hosting multiple virtual machines. Similarly, Crusoe is marked as employing hard-

ware, as features were added to the processor specifically to support the semantics

of compiling x86 code for the Crusoe VLIW.

In Section 2.2, we raised the point that there is an opportunity for pre-processing

to be used to do machine-independent analysis on the server. When considering

that in conjunction with Table 2.3, we see that all of the Java VM implementations

use compilation as an execution strategy. This indicates that any work that could

be performed by the server, transmitted in .class files, and used by a JVM when

doing translation to machine code, would be useful. Such a system, to be most

useful, must maintain the portability and safety of unmodified Java .class files.

In the next chapter, we will see how such a system can be designed and imple-

mented.
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Annotations

Annotations form the basis of our research. In this chapter we describe how anno-

tations can be used to take advantage of the division of labor between the server

and the client in a mobile code environment. We describe which compiler opti-

mizations our annotations address and how we transmit optimization information

from the server to the client. We then describe each of our annotations and the

environment they operate in. The description of our system continues with how

annotations guide code generation and how the annotations are generated. We con-

clude with a description of two closely related register allocators.

3.1 Introduction to Annotations

The division of labor in the mobile code environment between the server and the

code generator can be exploited to improve the performance of code generated in

the mobile client. As we saw in Chapter 2, most JVMs perform extensive analyses.

If these analyses could be performed by the server and exploited inexpensively by

the client, mobile code would execute more quickly and run-time costs for code

generation would be reduced. The server is not time-constrained, so we can pre-

process the mobile code and express the analysis information as annotations to the

Java .class files. We focus on register allocation, as proper use of registers is

critical to performance. This is because registers typically have an access cost that

is at least an order of magnitude less than that of accessing memory. Our annota-

tions use as a machine model a register-based machine with an infinite number of

registers.

We add information about register allocation for this machine model to the

Java .class file. The .class file has an annotation mechanism which is used

to store most of the information about the class. For example, each Java method

is represented in the .class file with a structure containing a reference to the

method’s name, a reference to the method’s signature, and a variable number of

named “attribute info” structures. The bytecodes for the method are stored as an

attribute info structure named “Code.” In our subsequent discussion, we will refer

to these attribute info structures as annotations.

In Figure 3.1 we see the environment of our annotated .class file. A client

makes a request for some Java code, packaged either as a .class file or as a
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Server Client

modified JVM
produces native
code

execution begins

first result

final result

t1
t2

.class request

annotated .class

Figure 3.1: Java Virtual Machine Execution. t1–time from client requests a Java
.class file to time that the client first sees results; t2–time from the .class file
request to computation completion.

.jar file containing a .class file. The server sends the file to the client. This

annotated code is used by our modified JVM to produce machine code, as in any

Just-in-time (JIT) compilation system. We are interested in minimizing both t1 and

t2. If we were interested in minimizing just t1, then we could use an interpreter over

the bytecodes and see our first results quickly. If we were interested in minimizing

just t2, then for a program which was compute intensive, we could tolerate compiler

analysis being done by the JVM.

The client-side code generator could perform the same control and data flow

analysis that the server-side annotator does. But our approach is to do as much

work up front as possible. Many optimizations can be divided into a super-linear

analysis phase and a linear exploitation phase. By performing the expensive anal-

ysis phase on the server and recording the results as annotations, we can then very

quickly produce high-quality code in the code generator. In addition to the reduc-

tion of time needed to produce code, annotations allow the JVM implementation

to be less complex.

3.2 Annotating JVM Code

Annotations are the addition of information to source code to guide or give hints

to code generator. These annotations typically take the form of statements in the

textual representation of the source code, supplied by a programmer, and are meant
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to give guidance to the code generator in producing more efficient code. Our an-

notations are information added to the “source” of the code generator doing native

code generation in a mobile code environment. The source here is Java bytecodes

and our annotations are expressed as information added to the Java .class file.

We implement our system, Press Pot, as a class file transformation. This class file

transformation runs on the server in advance of any client requesting a .class

file. We take a .class file and perform analyses on the code for each method,

and write the results of these analyses as an annotated .class, where the results

are represented as attribute info structures for the method. Because the .class

files already use annotations, extending the format of the .class files was not

required.

The JVM specifies two relevant requirements for annotations. JVMs are re-

quired to ignore any annotations that that are not recognized. Annotations are not

allowed to change the meaning of a program, as this would subvert the safety guar-

antees of the JVM.

These requirements constrain the implementation of our system. The require-

ment that annotations not change the meaning of a program restricts us from chang-

ing the bytecodes to a form that has an explicit register allocation. It also means

that the annotated class files must work on JVMs that are not annotation-aware. To

meet these requirements, we do not modify the Java bytecodes, but add information

expressing our analysis information.

Java bytecodes are also verified to insure certain safety properties. The relevant

safety property for Press Pot is that values must be type-safe. In other words, any

use of a value must conform to the type it had at its definition. If a bytecode

produces an integer value, then a bytecode that consumes it must be defined to take

integer values as arguments. This restrains our system, as our annotations must

maintain this type-safety property and be verifiable that they do.

Note that adding annotations does not preclude the VM from doing additional

optimizing transformations on the bytecodes. It merely changes the intermediate

representation from bytecodes for a stack-based virtual machine to bytecodes for

an infinite register virtual machine.

The first part of our system, the annotator, takes as input .class files and

produces as output annotated .class files (Figure 3.2).

These annotations are produced by using the Java bytecodes as an intermediate

representation and applying traditional optimizing compiler algorithms to them.

We then add the results of these algorithms as annotations to the output .class

file. The size of these annotations must not be overly large, as this would increase

the amount of time needed to transfer the annotated .class file across a network.
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Java Source Compiler .class file annotated.class file

Annotation-aware JVMAnnotator

Figure 3.2: Annotation Process, showing flow of annotated code

3.3 Register Allocation Annotations

The system of annotations we have developed is used to specify how physical regis-

ters should be used by an annotation aware JVM. We have three annotations which

contain information about register usage: virtual registers, copies and swaps. These

annotations are associated with a particular Java method.

The base of our system of annotations is the virtual register (VR) annotation.

The VR annotation is the means to obtain a register allocation (as opposed to a

register assignment) without performing it on the client. A register allocation is

the division of values into a set of equivalence classes. A register assignment is

the assignment of a specific register to each equivalence class. For example, if we

have five values, (A, B, C, D, E), then a register allocation may divide these into

two equivalence classes,
�
A, B � and

�
C, D, E � without there being an assignment

of these equivalence classes to a particular register of a machine. A register assign-

ment for the above might be (
�
A, B � � r0) and (

�
C, D, E � � r1), where r0 and r1

are registers for some machine.

It is not possible to give a register assignment in a portable way. Each type

of CPU has a different number of registers, and some registers may be limited in

the values they can hold or in which instructions can use them. Traditional register

allocation has access to this information, as the target machine is known. This is not

true in the mobile code environment. Instead, we prioritize our register allocation,

allowing the code-generator for the target machine to make register assignment

decisions. The use of a verifiable register allocation permits the code-generator to

quickly generate machine code which makes more frequent use of registers to hold

values, as opposed to keeping values in memory. As access to registers is at least

an order of magnitude faster than access to memory, efficient use of registers is

critical to producing high-performance machine code.

We have an additional annotation, the copy, whose use is required in conjunc-

tion with the VR annotation. The copy annotation is used to allow an important

optimization by the code-generator by compensating for certain aspects of the Java

bytecode’s stack-based nature.

Our final annotation is the swap, which is used to tailor the VR annotation for

regions of a method. If different areas of a method have a significantly different
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use of VRs, then the swap annotation is used to temporarily raise the priority of

VRs which are heavily used in an area of the method. If the VR whose priority

is being raised is not currently allocated to a physical machine register, then the

code generator can “swap” a higher-priority but temporarily unused VR to memory

and place the VR whose priority is being raised into a register. This compensates

for situations where there are more values than registers by adjusting to the areas

where values are used. Placing values into registers when they are active improves

performance by avoiding accesses to memory.

3.3.1 Simple Example

Before going into detail about how annotations are generated and the exact nature

of the mechanisms in the code generator to exploit them, let us examine a simple

example illustrating the VR annotation. As our prototype implementation is for the

SPARC, all examples are for the SPARC. In some examples, we will use a reduced-

register SPARC machine to illustrate points about machines with a smaller register

set.

The SPARC architecture divides the general-purpose register set into four parts,

the global registers, labeled %g0-%g7, the input registers, labeled %i0-%i7, the

output registers, labeled %o0-%o7, and the local registers, labeled %l0-%l7. In

SPARC assembly language, the destination of an instruction is the rightmost argu-

ment.

The Java bytecodes operate on stack values, with many instructions taking as

implicit arguments one or more elements from the top of an operand stack and

placing the results onto the top of the operand stack. Other Java bytecodes load

or store “slots” for holding values. These slots are part of the activation record for

the method. These slots are referenced by number, with bytecodes set aside for

accessing lower-numbered slots implicitly. Other bytecodes have operands that are

part of the bytecode stream, just like operands for a register-based real machine.

In Figure 3.3, we have an example of the Java source for a “for” loop. This loop

has three values, sum, i, and the constant 3. Below it, we have the Java bytecodes

corresponding to the source. The Java bytecode is formatted with the first column

the bytecode location, the second column the Java bytecode and any arguments,

and the third column the “VR” annotation. The third column is a register assign-

ment for the bytecode to its left. We call this register assignment “virtual registers”

or VRs. In the fourth column, we have the SPARC machine code generated from

the bytecodes using the VR annotation. The last column has the SPARC machine

code generated from the bytecodes using Kaffe’s built-in local register allocator.

Kaffe causes values active in a basic block to be spilled (stored) at the end of each
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int sum = 0;
for (int i = 0; i < 3; i++) {

sum += 1;
}

VM SPARC SPARC
PC ByteCode VR Instruction (w/VR) Instruction (wo/VR)
0 iconst 0 1 mov %g0, %l1 clr %l0
1 istore 0 1 mov%l0, %l1
2 iconst 0 0 mov %g0, %l0 clr %l0
3 istore 1 0 mov %l0, %l2
4 goto 13 – b st %l1, [%fp - 96]

nop st %l2, [%fp - 92]
b
nop

7 iinc 0,1 1 add %l1,1,%l1 ld [%fp - 96], %l3
add %l3,1,%l3

10 iinc 1,1 0 add %l0,1,%l0 ld [%fp - 92], %l4
add %l4,1,%l4
st %l3, [%fp - 96]
st %l4, [%fp - 92]

13 iload 1 0 ld [%fp - 92], %l5
mov %l5, %l6

14 iconst 3 2 mov 3, %l2 mov 3, %l7
15 if icmplt 7 0,2 cmp %l0, %l2 cmp %l6,%l7

bl bl
nop nop

Figure 3.3: Simple Example, Shows relationship of Java source, Java bytecodes,
VRs, and SPARC instructions for “for” loop with accumulator
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basic block and loaded as needed. Basic blocks are separated by double horizontal

lines.

The virtual register ����� holdssum, the virtual register ����� holds3, and the virtual

register ���	� holds i. Also, the assignment of physical registers for virtual registers

starts at%l0. 1 The first piece of machine code starts with a SPARC machine idiom

of using global register %g0, which is always zero, to initialize a register with zero.

At VM PC 1, we see an empty slot in the “SPARC instruction (w/VR)” column,

indicating that no machine code was generated for the istore 0 bytecode. The

next interesting set of instructions occurs in the code for the iinc bytecodes. The

iinc bytecode increments a local integer variable, indexed by its position in the

stack frame, by a signed one byte quantity. The numbers after the iinc bytecodes

indicate which local slot is being incremented, and what it is being incremented

by, respectively. This is part of the normal encoding for the iinc bytecodes. Each

iinc bytecode is translated into a single SPARC add instruction, since the values,

referenced by both bytecodes are being stored in physical registers.

In this example, each VR corresponds directly to a physical register. The use-

fulness of the VR annotation is that it provides a register assignment at no cost.

If there were always a sufficient number of physical registers, the register assign-

ment problem would be completely conventional. In situations where the number

of physical registers is not sufficient, our VR annotation keeps the most frequently

used values in registers. We shall see later how our swap annotation further aids in

keeping frequently used values in registers.

3.3.2 Virtual Registers

As noted above the VR annotation is the means to obtain a register allocation with-

out performing it on the client. We give characteristics of the VR annotation itself,

then briefly describe its benefit.

The VR annotation is a mapping from bytecode operands to virtual register

numbers. The number of virtual registers per bytecode varies. For example, a

binary arithmetic operator will have three virtual registers—two for the input and

one for the output. A method call bytecode will have a variable number of virtual

registers—one for the object, one for each argument to the method, and one for the

return value.

Lower-numbered VR’s have higher priority. VRs are assigned their priority

based upon their importance and to minimize the number of distinct virtual reg-

isters. VR annotations are minimal assignments—we use no more VRs than the

maximum number of simultaneous live ranges. A live range is a set of points in

1“ell zero”, not “one zero.”
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the program where a value is “live,” i.e. there is a use of the value along some

path starting at the point. VRs are assigned based on the importance of a given

VR staying in a physical register. Disjoint live ranges of the same type may be as-

signed to the same virtual register. This makes each VR monotyped (i.e. a VR can

only “carry” one type of value throughout the entire method). This includes object

reference types. For example, if ���	� is used as a reference to an object of class A at

one point in a program, it may not later be used as an integer or even as a reference

to an object of class B, unless class A and class B have a type-compatible super

class. Two object references are type-compatible if they have a common ancestor

and accesses to them are appropriate to the ancestor. If one class is an ancestor of

the other, then the ancestor is the common super class. The bytecode verification

procedure calculates this nearest common ancestor, which is the least-upper bound

along the inheritance and interface hierarchies. [31]

This annotation uses an unsigned one byte quantity for each virtual register.

The values 0–254 indicate a valid virtual register number and the value 255 indi-

cates no virtual register assignment. More information on the VR usage for every

bytecode can be found in Appendix A.

3.3.3 Copies

The VR annotation by itself is not sufficient to ensure a proper register alloca-

tion. This can be characterized as an “impedance mismatch” between the stack

orientation of the Java bytecode and the three-address code nature of the VR an-

notation. This mismatch occurs because local load/store bytecodes do not have

machine code generated for them. We generate machine code on a per-bytecode

basis and the local load and store bytecodes do not have any machine code gener-

ated for them. With the exception of the situation described below, this is possible,

since any bytecode that defines a value will result in machine code that places that

value in a physical location (a register or in the stack) and any use will reference

that location. However, in some situations values are placed on the operand stack

in a way that doesn’t match the simple consumption model, resulting in incorrect

programs if not compensated for. To correct the problem, we have the copy an-

notation. The copy annotation deals with the situation where the value of a slot is

loaded on the Java stack and used in such a way that simply referencing the corre-

sponding VR would be incorrect. One such case is when the loaded value is simply

stored into another slot. The simplest example occurs with a Java source statement

like:

h = k;

Which results in Java bytecode like:
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iload_0

istore_1

This bytecode sequence does the following. The first bytecode, iload_0, pushes

onto the stack the value in slot 0 of the method’s activation record. The second

bytecode istore_1, pops from the stack a value which is placed into slot 1 in

the method’s activation record. If no code is generated for these bytecodes, then

the assignment effectively doesn’t take place. We will see other situations where

copies must be generated in Section 3.6.2. A copy is, quite simply, an annotation to

indicate the program point where the code generator should generate a copy from

one virtual register to another. The source VR is determined by examining the VR

for the bytecode at the source PC. The source VR is the VR that is being copied

from—the value that is being generated to compensate for the absence of the code

for local loads and stores.

A copy annotation consists of a triple of � sourcePC, targetPC, targetVR � .

The physical location of the source and target VRs of the copy can be in a register

or in memory.

3.3.4 Swaps

When every variable is used with about the same frequency throughout a program,

deciding which are most important to keep in physical registers (or equivalently

in our case, to assign to lower numbered virtual registers) does not matter much.

Similarly, if there are enough physical registers, then the priority does not matter.

The reason is that no matter what the assignment, an equal number of operations

will result in accesses to memory. The point is that the non-uniform use of a vari-

able throughout a method opens up opportunities for that variable to be spilled and

allow a more important value to have a chance at a physical register.

Using the swap annotation to guide changes in physical register assignment is

crucial in achieving our goal of having machine-independent annotations. There is

a great disparity in the number of registers available in popular microprocessors.

Those in the RISC family, such as the SPARC, have a large number of registers,

typically 32 or greater. In the CISC family, there is a great deal of variety. The Mo-

torola 68000 has only 16 registers, and the most popular non-embedded processor,

the Intel x86 family, has even fewer.2 On machine witha sufficient number of phys-

ical registers, swaps will have no effect—i.e. generate no code at all, if the swap

is between two VR’s that are already assigned to physical registers. Non-uniform

register usage is related to portability in the following way. A non-uniform register

2Stating an exact number is problematic, due to the non-orthogonal nature of register usage, i.e.
some instructions can only be used with certain registers.
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usage will result in lower performance if the number of physical registers is insuf-

ficient to hold all the values and if locally important values are not swapped into

physical registers to replace less important values. In terms of register allocation,

the distinguishing difference between different processors is the number of physi-

cal registers. The number of registers that a RISC processor possesses is typically

sufficient to hold all values if a global register allocator is used. This is not true of

the x86 or similar low register count machines. Therefore, to have portable register

allocation, low register count machines must be accommodated.

Given the disparity in the number of registers between different processors,

swap annotations provide a means for improving the quality of the register assign-

ment. Higher quality is achieved by permitting the generation of improved spill

code in a machine-independent fashion.

To do this, we mark regions of the program with “swaps” between two virtual

registers. This marking indicates that until another swap is encountered, the roles

of the two registers are exchanged. In a traditional global register allocator, if the

number of registers is insufficient to contain all live ranges, then code is inserted

to “spill” values from registers into memory and load values from memory into

registers. The swap annotation has the effect that spill code generation has in a

traditional allocator. As covered in more detail in Section 3.5.3, the presence of a

swap annotation may or may not result in spill code being generated by the code

generator. If there are sufficient physical registers, no spill code will be generated.

3.4 Overall Environment

To keep things concrete, we will continue using the SPARC as our example ma-

chine in the following sections, when we need a specific machine for expository

purposes. With the exception of its register windows, the SPARC is like most mod-

ern RISC architectures. Furthermore, since all architectures perform better when

registers are used as much as possible, most of the principles guiding the SPARC

implementation hold everywhere. 3

Figure 3.4 gives the overall structure of the generated code’s environment. Val-

ues kept in registers are shown in the block labeled “Registers.” This block rep-

resents the physical registers on the machine. In the figure, the machine has six

physical registers, of which only two are available for storing virtual registers. The

first two physical registers, r0 and r1, are reserved for storing the frame pointer

(fp) and the stack pointer (sp), respectively. The next two physical registers, r2

and r3, are reserved for storing temporary values that are used during execution of

the machine code. One use for these temporary registers is for storing values for

3Including the popular Intel x86 and the Motorola 68K.

40



Draft of April 29, 2002 at 14 : 36

TEMP0

TEMP1

VR0

VR1

(VR0)
(VR1)

VR2

VR3

Stack

Code

Heap

}Current 
Frame

fp, r0

sp, r1

r2

r3

r4

r5

Registers Memory

Figure 3.4: Run-time Environment. The stack location of ����� is reserved for
spilling register ����� ; it may or may not contain the same value at other times.

virtual registers that are not allocated in physical registers. Values kept in memory

are shown in the block labeled “Memory.” This block represents the memory of the

physical machine. Within that memory, an area is set aside for the runtime stack,

which holds the frames of the currently active methods. The current stack frame is

shown at the top of the stack. Within the current stack, the VRs which are not allo-

cated to physical registers, ��� � and ����� , are shown. At the opposite end of memory

from the stack is the heap. Objects and arrays are kept in the heap and references

to them are kept in registers or on the stack. An example of a VR for a reference to

the heap is show in r4, where ��� � is either an array reference or an object reference.

The following sections give details related to the environment sketched in Figure

3.4.

3.4.1 Simple Properties

Our central annotation specifies a register allocation. This annotation, the Virtual

Register annotation (VR), decorates each Java bytecode with a set of virtual regis-

ters, which correspond to the operands of the bytecode. The code generator uses

the VR annotation to generate a register assignment for the machine instructions.

These VRs are arranged in priority order, meaning that the lower the VR is, the

more likely it is to be assigned to a physical register in the code generator.

Below are some simple properties that guide our code generation process. We

use the term “physical register(s)” to refer to the machine registers and “physical
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location” to refer to some location on the machine, either in a physical register or

in memory on the stack. We will also use the term “primarily stored” to indicate

the physical location where a VR’s value can be found most of the time. If this

location is a register, there may still be times when the value is stored in the area

set aside for it on the stack. This is done when making method calls for registers

whose values are not preserved across method calls.

� All virtual registers have at least one physical location. Virtual registers

which are allocated to physical registers have two physical locations, their

physical register and their stack location. Other virtual registers will reside

only in one physical location, on the stack. We will see the need for all values

to have a place on the stack when we deal with swaps.

� Constants are either folded into the machine instructions or are statically

allocated alongside the code for each method. The memory for the code and

constants is allocated in the heap, but is not subject to garbage collection, so

fixed addresses are used by our code generator.

� The bytecode operand stack is not mimicked. Rather than loading operands

and storing results around every bytecode, physical registers are used as

much as possible. If the VRs that are arguments to a bytecode aren’t as-

signed to physical registers, then they are loaded from the stack into tempo-

rary registers. If the VR that is the target of a bytecode isn’t assigned to a

physical register, the result of the bytecode is computed into temporary reg-

ister, then stored to the stack. For example, the integer add bytecode requires

three operands; two for the input and one for the output. If one of the inputs

has a VR which is not allocated to a physical register, then it is loaded into

a temporary register. This temporary register is then used as an operand to

the add machine instruction. A more detailed description of this process is

given in the next section.

� A simple code-generation time data structure, the VR location table, pro-

vides the mapping from VRs to physical locations. Conceptually, the code

generator keeps two sets of mappings, one for virtual registers residing only

in memory and one for virtual registers additionally residing in a physical

register. The VR location table is static and is built before code generation

begins. 4 Imagine we have a machine where only two physical registers

remain after setting aside registers for use as temporaries. Further, assume

that the method we are generating code for has five VRs, numbered 0–4. An

example of this data structure can be seen in Figure 3.5. This indicates that

4Ignoring for the moment our swap annotation.
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virtual register physical register memory
0 %l0 [%fp - 12]
1 %l1 [%fp - 16]
2 – [%fp - 0]
3 – [%fp - 4]
4 – [%fp - 8]

Figure 3.5: VR Location Table; MAXREGS = 2

virtual registers 0 and 1 will be primarily stored in physical registers %l0

and %l1 respectively and that virtual registers 2, 3, and 4 will be primarily

stored on the stack at offsets 0, 4, and 8 from the frame pointer.

3.4.2 Non-register Resident Values

To manage situations where the number of physical registers is insufficient to con-

tain all the virtual registers, the excess virtual registers are placed on the stack.

There are several things to note.

� Several physical registers are reserved for temporary use. The lifetime of the

values placed into these registers typically does not extend beyond the span

of the machine code generated for one Java bytecode.

� For a given virtual register, its location on the stack is at a fixed offset from

the frame pointer.

� On machines which allow the target of an instruction to be the same as one

of its operands (e.g. add %l0,%l1,%l0), only two temporary registers

are needed (actually, two temporary registers for integral values and another

two for floating-point values.)

The heap is used for instance variables and class variables. The JVM bytecodes

include instructions for accessing these kind of variables. For those bytecodes,

there is an associated VR which holds the value that is either loaded from or stored

to the variable. The VR represents this copy of the field value and there is no

allocation of VRs to represent the field itself.

3.4.3 Constraints Imposed by Verification

Virtual registers are monotyped, meaning that the values held by a given virtual

register are of the same type. This makes the calculation of the VR location table

possible. If the type of the virtual register was not fixed, then determining the

number and class of physical register to allocate to the VR would be difficult.

Some types supported by the JVM require 64 bits to represent, which requires two
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physical registers on some machines. Other types are most beneficially allocated

to floating-point registers. The type of a VR is one of the Java primitive types,

such as int or float, or an object reference type. Object reference types are distinct

from each other and from the primitive types. For example a VR may not contain

values that are of primitive type “int” and object type “String.” As another

example, a VR may not contain values that are of object type “String” and object

type “Exception,” unless the values are only used in a way that is compatible

with their nearest common ancestor in the inheritance hierarchy, the object type

“Object.”

3.5 The Code Generation Process

In this section we discuss the code generation process, starting with the process for

generating machine code from bytecodes that are annotated with VR information.

Then we discuss the code generation for the copy annotation and then conclude

with a discussion of the code generation for the swap annotation.

3.5.1 The Overall Code Generation Process and VRs

The general scheme for generating machine code is as follows, doing the steps

below for each bytecode:

1. For all VRs used as input to the bytecode which are not assigned a physical

register according to the current state of the VR location table, generate a

load from their stack location into a temporary physical register.

2. If the VR(s) used for output from the bytecode is not assigned a physical

register, set aside a temporary physical register.

3. Generate the appropriate machine instruction using temporary and/or perma-

nent registers

4. If the output VR for the bytecode is not assigned a permanent physical reg-

ister, generate a store from the temporary physical register to its location on

the stack.

The VR location table is determined by the code generator using information

gathered during the bytecode and VR annotation verification process. The verifica-

tion step is used by the JVM to ensure that the bytecodes of a downloaded program

do not corrupt the virtual machine. We have modified this step to additionally ver-

ify the VR annotation associated with each method. As a side effect of this process,

the type of each virtual register is determined. This type is one of the Java primitive
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types, such as integer or float, or an object reference type. For machines with a split

general purpose register set and floating point register set, object references and in-

tegral types are assigned to the general purpose register set and floating point types

are assigned to the floating point register set. There may be some VRs which will

not be assigned to physical registers. Any virtual registers not assigned to physi-

cal registers are only assigned locations on the stack. This verification process is

also responsible for gathering information needed for generating procedure entry

prologues.

The calculation of the VR location table begins by finding a physical register

of the appropriate type for ����� and marking that physical register as allocated. The

process continues with ����� and proceeds until a physical location is determined for

every VR.

The verification process allows us to make an important optimization. The

Java Virtual Machine associates each method with a frame. These frames have two

fixed-size components. The first is an operand stack for holding the operands to

the bytecodes and for their results. The second is a set of indexed slots for holding

local variables. The JVM has bytecodes that reference the frame slots by either

loading from a slot onto the stack or popping from the stack and storing into a

slot. Since the verification process ensures that every use of a JVM frame slot (or

equivalently a local variable) is preceded along all paths by a definition of that slot,

we can logically eliminate load/store bytecodes that reference locals.

As an example of the machine code generated using this scheme, consider an

iadd bytecode and its corresponding annotation. The iadd bytecode is a zero-

address instruction, which in the semantics of the stack-oriented JVM, removes the

top two integer operands off the bytecode operand stack, adds them, and pushes the

resulting integer result onto the stack. The iadd bytecode annotated as follows:

“iadd 2,3 � 4”. signifies that the iadd bytecode is annotated with three vir-

tual registers, 2, 3, and 4. Our VR annotation has the semantics: take the values

contained in virtual registers 2 and 3, add them, and place the result in virtual reg-

ister 4. If we have a machine with a SPARC-like instruction set, but with only two

allocatable physical registers for holding integers, then we generate the following,

assuming the mapping from Figure 3.5:

! VRs > vr1 live in the activation record

ld [%fp - 0], %g1 ! copy vr2 -> g1

ld [%fp - 4], %g2 ! copy vr3 -> g2

add %g1,%g2,%g1 ! compute result

st %g1, [%fp - 8] ! copy result to vr4
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virtual register physical register memory
0 %l0 [%fp - 4]
1 %l1 [%fp - 8]
2 %l2 [%fp - 12]
3 %l3 [%fp - 16]
4 – [%fp - 0]

Figure 3.6: Mapping from VRs to Physical Registers; MAXREGS = 4

(We are using %g1 and %g2 as temporary registers.) If we can allocate four phys-

ical registers to virtual registers, then the mapping would become that shown in

Figure 3.6. We would generate:

! VRs > vr3 live in the activation record

add %l2,%l3,%g1 ! compute result

st %g1, [%fp + 36] ! copy result to vr4

3.5.2 Code Generation for Copies

Generating code for a copy is straightforward. The copy annotation, is composed of

a sequence of triples of the form: � sourcePC, targetPC, targetVR � , An individual

triple is called a copy. The target of the copy is the targetVR of the copy. The

source of the copy is the VR that is defined by the bytecode at sourcePC of the

copy. The targetPC is the PC of the consumer of the copy. This targetPC is not

currently used.

To generate the machine code for the copy the following procedure is used.

The process for generating machine code is to iterate through the bytecodes and

generate machine code for them, one bytecode at a time. At each iteration of this

loop, the copy annotation is checked for a copy for the current bytecode PC. If

one is found, then machine code for the copy will be generated. Using the VR

location table, we generate the machine code to copy the value from the sourceVR

to the targetVR. Either of these VRs may be in memory or in a register. Therefore

either a register-to-register, memory-to-register, register-to-memory, or memory-

to-memory move is generated.

3.5.3 Code Generation for Swaps

The swap annotation consists of information indicating the PC where the swap

is located and which virtual registers are having their priorities swapped. What

the code generator does with the swap annotation is dependent upon the machine

architecture, particularly the number of registers available to be allocated. It is

summarized in Figure 3.7.
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A B action
in reg in reg none
in reg in mem store reg(A) and load mem(B), change loc(B) to

be reg(A), loc(A) to be mem(A)
in mem in reg none
in mem in mem none

Figure 3.7: Swap of Virtual Registers A and B Versus Their Physical Registers, B
is being “promoted”

int sum1 = 0, sum2 = 0;
for (int i = 0; i < 3; i++) {

sum1 += 1;
}
for (int i = 1; i < 4; i++) {

sum2 += 1;
}
return sum1 + sum2;

Figure 3.8: Java source used in illustrating swap annotation utility

In Figure 3.7, “in reg” means that the corresponding virtual register resides in

a physical register, “in mem” means that the corresponding virtual register resides

in memory, reg(A) means the physical register assigned to ����� , mem(A) means the

memory location assigned to ����� , and loc(A) means the current physical location

of a virtual register A. B is the VR whose priority is being raised. The second line

of the table in Figure 3.7 specifies a change in these mappings, as well as a physical

exchange of values between a register and memory. Since ����� is currently not in

a register, but ��� � is, ��� � is stored to memory and ��� � is loaded into the physical

register previously used for ����� .

One can see a simple example of the utility of swaps in Figures 3.8, 3.9, and

3.10. In Figure 3.8 is the body of a Java function. In Figure 3.9 is the corresponding

annotated Java bytecode and SPARC instructions, with registers allocated as if

the number of allocable registers were three. In Figure 3.10 we see the situation

when swaps are used. In both Figure 3.9 and Figure 3.10, a starred (“*”) location

indicates the position of a swap. As a summary, here is the VR location table as

it is at the beginning of the code genration process, along with the corresponding

Java frame slot:
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VM SPARC
PC ByteCode VR Instruction
0 iconst 0 0 mov %g0, %l0
1 istore 0 0
2 iconst 0 3 mov %g0, %g2

st %g2, [%fp+4]
3 istore 1 3
4 iconst 0 1 mov %g0, %l1
5 istore 2 1
6 goto 15 b xxx

nop

9 iinc 0 1 0 addcc %l0,1,%l0
12 iinc 2 1 1 addcc %l1,1,%l1

15 iload 2 1
16 iconst 3 2 mov 3, %l2
17 if icmplt 9 1,2 cmp %l1, %l2

bl xxx
nop

20 iconst 1 1 mov 1, %l1
21 istore 3 1
22* goto 31 b xxx

nop

25 iinc 1 1 3 ld [%fp+4], %g2
addcc %g2,1,%g2
st %g2, [%fp+4]

28 iinc 3 1 1 addcc %l1,1,%l1

31 iload 3 1
32 iconst 4 2 mov 4, %l2
33 if icmplt 25 1,2 cmp %l1, %l2

bl xxx
nop

36* iload 0 0
37 iload 1 3
38 iadd 0,3 � 0 ld [%fp+4],%g2

add %l0, %g2, %l0
39 ireturn 0 ret

restore%g0, %l0, %o0

Figure 3.9: Java bytecodes, VRs, and SPARC instructions showing utility of swaps
(without swaps)
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VM SPARC
PC ByteCode VR Instruction

...
22* goto 31 st %l0, [%fp+8]

ld [%fp+4], %l0
b xxx
nop

...
25 iinc 3 addcc %l0, 1,%l0

...
36* iload 0 0 st %l0, [%fp+4]

ld [%fp+8], %l0
...

Figure 3.10: Java bytecodes, VRs, and SPARC instructions showing utility of
swaps (with swaps)

slot VR location

0 0 %l0 ([%fp+8])

3,2 1 %l1

– 2 %l2

1 3 [%fp+4]

The value corresponding to sum1 is assigned to ����� , and the value for sum2 is

assigned to ��� � . Although ��� � is not used in the first for loop and ����� is not used

in the second, we cannot assign either to the same virtual register since they are si-

multaneously live or interfere. If we used only our VR annotation, then ��� � would

not be assigned to a physical register. This is demonstrated by the load and store

for the iinc bytecode at PC 25. However, we can improve the performance of this

code by annotating PC 22 and PC 36 by saying that the relative priority of ���	� and

��� � are swapped when doing code generation. We annotate at these locations since

they are natural loop boundaries. This is done by modifying the VR location table

(discussed in Section 3.4.1). The change is seen in Figure 3.10. This has resulted

in removing a memory load and store from the body of the second loop. By hav-

ing swaps, we have managed to obtain almost the same performance with a three

register machine as with a four-or-more register machine. This was accomplished

at the cost of a load and a store, plus transmitting the swaps.

One aspect of the swap annotation not covered in the code generation descrip-

tion above is the placement of the machine code for doing the swap. In the fol-

lowing discussion, it is assumed that the VR location table indicates that code for

performing a swap is to be generated. There are three different types of swaps,
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SWAP BEFORE, SWAP AFTER, and SWAP EARLY. The relative ordering of the

code for the copy and the annotated bytecode as well as changes to the VR loca-

tion table depend upon the type of the swap. If the swap has type SWAP BEFORE,

then the swap code is generated before the code for the bytecode at the swaps’s PC

and the VR location table changed. If the swap has type SWAP AFTER, then the

swap code is generated after the code for the bytecode at the swap’s PC and the VR

location table is changed. If the swap has type SWAP EARLY, then the situation is

slightly more complicated. If the annotated bytecode is not a conditional branch,

then the code for the swap is generated after the code for the bytecode at the swap’s

PC, and the VR location table is not changed. If the annotated bytecode is a con-

ditional branch, then the swap code should only be executed when the branch is

taken. Therefore, we generate code for the branch, but with the sense inverted, and

the target of the branch set to the code for the next bytecode, thereby continuing ex-

ecution in the loop. The code for the swap is generated after this branch, followed

by an unconditional branch to the target of the annotated conditional branch. The

VR location table is not changed.

3.6 The Annotation Process

The generation of annotations is done off-line and therefore is not time constrained.

We discuss the process of generating our three annotations: virtual registers, copies,

and swaps.

3.6.1 Generating VR Annotations

The process of generating our VR annotation is similar to that of other register al-

locators. We use standard graph-coloring techniques, with an important distinction

— we do not know the number of physical registers. Therefore, our algorithm for

finding a register allocation consists of the standard algorithm modified to operate

without this vital piece of information.

Instead, we find a coloring which includes all values and then prioritizes the

resulting virtual registers. Additionally, to meet the mobile code need for verifica-

tion, we force registers to be monotyped.

Prioritizing the virtual registers compensates for the lack of knowledge about

the number of physical registers. In the normal Chaitin allocator (see Chapter

2.2.4), the physical register which holds a live range does not matter. In our priori-

tized VR scheme, on the other hand, we need to decide beforehand which registers

should be spilled first, and it is simplest to use the register number to indicate its

priority. Thus there is no difference between using register 1 and using register 10
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renumber

build

spill costs

collapse

prioritize

find k

Figure 3.11: Presspot Register Allocator

if the machine has ten registers, but there is a difference if the machine has fewer

registers and we are forced to spill one; register 10 has the lower priority, so it

will be the one spilled. Therefore, we use the so-called “Haifa heuristics” devel-

oped at IBM’s Haifa Israel laboratory by Bernstein et al. to order our colors so

the colors that hold the most important live ranges are numbered lower.[8] These

heuristics take into account the number of uses of the live range and how many

other live ranges are simultaneously live with this live range. They were originally

developed to determine which live range to spill if a k-coloring wasn’t possible in a

traditional compilation environment. Once this prioritization has been calculated,

the VR annotation is added to the .class file.

Our algorithm is based upon the Chaitin work. In the following list, starred

items are those phases of the algorithm which we have modified. Each of these

phase descriptions will begin with the Chaitin version followed by our modifica-

tion, where applicable.

Renumber Coalesce the def-use chains, creating the set of webs for which regis-

ters are allocated.

Build * Construct the interference graph. Edges are added between those webs

which are simultaneously live. To support verification in the client, addi-
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tional edges are added between those webs which are of incompatible types.

For example, if we have webs 0 and 1 of type integer and webs 2 and 3 of

type float, the following edges are added if they do not already exist due to

simultaneous liveness:
� �

0 � 2 � �
�
0 � 3 � �

�
1 � 2 � �

�
1 � 3 � � .

Spill Costs * Spill costs are calculated for each web based on an estimate of the

cost of the load and store instructions that would be required to spill a par-

ticular web. The cost of each bytecode that uses a web is weighted by 10d

where d is the instruction’s loop nesting depth. We use an estimate of the

cost of spilling an instruction that is machine independent, such that the cost

of a load or store is some multiplier ( � 1) of the cost of non-load/store in-

structions.

Find k * Set k to the number of physical registers. Our modification is to set k to

the max degree of all nodes in the interference graph.

Simplify * Remove all nodes with degree less than k. If at any point there is a

node with degree greater than, or equal to, k, choose the node which has the

lowest spill cost and remove it from the graph. This test is unnecessary in

our version of the algorithm. Our algorithm doesn’t need to choose values to

spill, as all values will be colored. Nodes are colored by choosing the lowest

color that does not interfere with any neighbors already colored. This helps

to minimize the number of colors.

Collapse Merge webs that have identical colors. This minimizes the number of

virtual registers, and is used to aggregate the definitions and uses associated

with each VR when calculating priorities in the next stage.

Prioritize * Assign priorities to the webs based upon the Haifa heuristics. [8]

The prioritization in our algorithm works over the merged VRs, unlike the

simplify stage which works on the spill costs of the webs. These heuristics

consist of three functions that calculate the cost of keeping a particular value

in a register. For each of the three functions, calculate the sum of the value

of the function on each web. Choose the function which produced the lowest

total cost and sort the webs based upon the cost for that function. Assign

the priorities (VR assignment) for each web. Write out the annotation to the

.class file.

The prioritization phase deserves more explanation. The input is an assignment

of non-interfering webs to VRs. The output of this phase is also such an assign-

ment, but with the most important values (webs) placed in lower numbered VRs in

a contiguous integer progression.
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We use the Haifa heuristics, described in Section 2.2.4, modified to be machine-

independent. We take as our spill list the entire set of “colors,” (i.e. the register

assignment for all the webs) and derive an ordering for this VR assignment using

the following algorithm:

for every heuristic hi

for every web w

costs[hi][w.color] += hi
�
w �

perHcost[hi] += hi
�
w �

minH = index of MIN(perHcost)

sort web using cost[minH]

In other words, we calculate the priority for all VRs under each of the three heuris-

tics. We then choose the heuristic which has the lowest total cost and use that

heuristic in ordering the VRs (i.e. choosing their priorities).

3.6.2 Generating Copy Annotations

Copies are generated in three situations. We will deal with them in order of increas-

ing complexity. The copy annotation is generated in exactly three circumstances.

Variable-to-variable Assignment

The simplest situation occurs when the bytecode contains the implementation of a

Java source level variable to variable assignment statement. That is:

h = k;

would cause something similar to the following to be generated:

0 iload_0 5

1 istore_1 5

The first bytecode loads the integer value at slot 0 and pushes it onto the stack.

The second bytecode pops the integer value from the top of the stack and stores it

into slot 1. Both bytecodes are annotated with the VR 5. These bytecodes have

the effect of copying the value in slot 0 to slot 1. But with no machine code be-

ing generated for such “local” loads and stores in our annotation-aware JVM, this

copy will not take place unless some other annotation is used. Both instructions

are annotated with VR 5, as the algorithm for generating VRs tracks values as the

are pushed onto the stack and move to and from slots. To compensate, a explicit

direction to the JVM in the form of a copy annotation. The copy � 1,6,? � is gener-

ated to indicate that the bytecode at PC 1, (iload_1) is to have a copy generated
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14 dup 9
15 istore_0 9
16 istore_1 9

Figure 3.12: Example of Duplicating Stack Manipulation

for it. 5 The result will be a copy from VR 5 to VR 6. In this situation, no new VRs

are introduced, as the copy is generated with a VR (6) that is used elsewhere in the

JVM code. The generation of a copy annotation is based upon a simple peephole

analysis of the JVM code, searching for load/store pairs.

Stack Manipulation Used for Multiple Assignment Expressions

Using just the copy annotation for variable-to-variable assignment is not sufficient.

Stack-manipulation bytecodes may generate new VRs, otherwise errors would re-

sult for situations like the bytecode in Figure 3.12. The dup bytecode pops the top

value off the stack and pushes two copies of the value onto the stack. This has the

effect of making two copies of the value on the top of the stack. Again, no ma-

chine code is generated for the dup bytecode or for either of the store bytecodes.

Therefore, two copies must be inserted. In this case the two copies � 15,10,? �

and � 16,11,? � would be generated. This would result in machine code for a copy

from VR 9 to VR 10 at PC 15 and in machine code for a copy from VR 9 to VR 11

at PC 16.

Definitions Across Basic Block Boundaries

In Figure 3.13, the input to the bytecode at 23 comes from two possible definitions,

one at 6 and one at 18. Simply annotating the bytecode at 23’s input VR as the

def VR of either 6 or 18 would be incorrect. 6 We introduce a copy annotation

for every instruction that pushes a value that crosses a basic block boundary. Such

values can occur as the result of compiling a Java source expression with the ternary

operator, “?:”. This copy will have as its target VR a VR which is a ”temporary”

that is shared between the other def instruction(s) and the use instruction in the

succeeding basic block.

For basic blocks which have greater than two in-edges, we keep track of the

VR generated on previous analysis and generate the corresponding copy.

5The third element of the triple, the targetPC is not currently used.
6A def VR is the VR for the value defined (the target) by a bytecode
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public void example(boolean boolVar) {
double d;
int i = 1, j = 2;
d = boolVar ? j++ : i++ ;

}

results in the following JVM code:

0 iconst_1
1 istore 4
3 iconst_2
4 istore 5
6 iload_1
7 ifeq 18

10 iload 5
12 iinc 5 1
15 goto 23

18 iload 4
20 iinc 4 1

23 i2d
24 dstore_2
25 return

Figure 3.13: Multiple Defs Across Basic Block Boundary
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3.6.3 Generating Swaps

In devising an algorithm for generating swaps, the intuition provided by the ag-

gressive live range splitting algorithm of Briggs was used. [9] There, static single

assignment form is used to determine regions in the program where live ranges

should be split. A live range is split by inserting code to store a value from a reg-

ister into memory and to load value from memory into a register. This code is

inserted around areas where the value isn’t used. Similarly, loops are used in our

system as the code regions around which to generate live range splitting.

The swap annotator is run after the virtual register allocator. All of the loops in

the method are examined, looking for virtual registers that are of high-priority (low

VR number), which are not used in the loop. If there is any VR which is not used

in the loop (a “hole”) and there is a lower-priority VR (higher VR number) that is

used in the loop, then a swap annotation is generated to change the priority of the

lower-priority VR to that of the higher-priority VR. Furthermore, the number of

accesses for every VR in the loop is calculated, and those VRs with more accesses

are assigned to those holes with higher priority. Swaps are limited to be between

VRs of compatible types.

Once the VRs and regions are determined, the swap annotation is generated.

There are three distinct types of swaps, BEFORE swaps, AFTER swaps, and

EARLY EXIT swaps. The differ in the placement of the movement code with

respect to the machine code for the annotated bytecode. The first bytecode for the

loop header is annotated with a BEFORE swap, which places the movement code

(generated by the annotation-aware JVM) before any code in the the loop. The last

bytecode for the loop is annotated with an AFTER swap, which places the move-

ment code on the exit from the loop. Both the BEFORE and AFTER swaps result in

changes to the VR mapping table. The EARLY EXIT swap is placed on any branch

bytecodes in the loop whose target is outside of the loop. The EARLY EXIT swap

does not result in changes to the VR mapping table.

3.7 Other Fast Allocators

In this section, we discuss two fast register allocators. The first is the linear scan

register allocator by Poletto and Sarkar. The second is the AJIT system by Azevedo

et al., which is an annotation-based JVM like ours.

3.7.1 Linear Scan Allocator

In Section 2.2.4, we discussed the linear scan register allocator by Poletto and

Sarkar. It runs in linear time and achieves results comparable to that of a graph-
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coloring allocator. This makes it a good choice for JVMs which are not annotation

aware, because such JVMs are already performing substantial analysis, including

the required liveness analysis. Thus, the quick code generation time and good per-

formance of generated code make implementing the linear scan algorithm the right

choice for such environments. However, our situation is different. We try to avoid

doing “heavy-duty” analysis in our JVM, preferring to stick to the simplest possi-

ble exploitation of possible annotation information. Without calculating liveness

information, we cannot make use of the linear scan register allocator in our back-

end. For our front-end, where we can afford more analysis and total compilation

time, the linear scan algorithm is still not the best choice. In their experiments, Po-

letto and Sarkar reported no benchmark where the performance of the code using

the linear scan algorithm was better than that for the code generated by the graph

coloring algorithm.[34] Therefore, the choice of using the graph coloring approach

in our front-end is appropriate.

3.7.2 AJIT

Most closely related to our work is the AJIT system. [22, 5] In this system, an-

notations are added to the .class file, and then use an “annotation-aware” JVM

to generate machine code. The more complicated Java bytecodes are broken into

suboperations (e.g. iaload, load an element from an array of integers) and pro-

duce annotations specific to the suboperations. Like our system, AJIT uses the

Kaffe JVM for their underlying virtual machine. Notably, they maintain (and ex-

tend with annotations) the Kaffe intermediate representation, whereas we convert

bytecodes directly into machine code. They use the annotation feature of the Java

VM design to open-up a communication path between the front-end and their VM

implementation.

Annotation Semantics The AJIT system describes a virtual register assignment

(VRA) which is similar to our VR annotation. However, due to the use of the Kaffe

IR and a loosening of the safety requirements, their annotation takes on different

semantics from ours. 7 We use an example from Azevedo to give a feel for the

nature of VRA.[5]

In Figure 3.14 we see an example of an annotated java bytecode, iaload and

the corresponding intermediate form. The iaload bytecode loads an element out

of an array of integers. The iaload bytecode takes two arguments from the stack,

the address of the array and the index to be accessed. In the AJIT system, there

are two different cases for this particular bytecode. 8 In the first, the array element

7See Appendix A for detailed semantics of our VR annotation.
8N.B. The code for checking array bounds is not shown.
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Case 1: Array element address calculation and array load
Bytecode Java IR

V0 holds array address
V1 holds index

iaload
1 : ishl V1, "ishift", V2
2 : iadd V2, "arraySizeOffset", V2
3 : aadd V0, V2, V3
4 : ild (V3), V4

Annotated Bytecode
opcode SRC SRC EXTRA EXTRA DEST
iaload V0 V1 V2 V3 V4

Case 2: Array load
Bytecode Java IR

V3 holds array element address
iaload

1 : ild (V3), V4
Annotated Bytecode
opcode SRC DEST
iaload V0 V1

Figure 3.14: Example of VRA annotations for iaload operation (from Azevedo).[5]
Bytecodes are standard Java bytecodes and Java IRs are AJIT’s custom intermedi-
ate representation.
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address has not been previously calculated. This is shown in Figure 3.14 as “Case

1.” The corresponding Java IR multiplies the index (V1) by the size of an integer,

by shifting (ishl), placing the result into V2. Then the total offset of the array

element is calculated by adding (iadd) the offset of the desired element to the

offset of the first element of the array (arraySizeOffset). Then the address

of the array element is determined by doing an address add (aadd) of the address

of the array (V0) to the total offset of the array element (V2). This address (V3)

is used to do an indirect load (ild) into the result register (V4). In the second

case, the array element address has been calculated, presumably by code similar

to the the first case. This is shown in Figure 3.14 as “Case 2.” In this case, a

simple indirect load is generated (ild) using the array element address (V0) and

the virtual register of the destination (V1).

Like our PressPot system, the AJIT VM takes advantage of the fact that the

Java VM design included a mechanism for communication from the front-end to

the back-end. However, the nature of the communication, while appearing simi-

lar on the surface, is substantially different in philosophy. AJIT trades safety for

performance. From a semantic viewpoint, the AJIT annotations introduce new

primitives into the bytecode language of the JVM. For example, when annotat-

ing an array load bytecode, their system breaks the array load into its component

machine-like operations, which will include a new “bytecode”, load from a precal-

culated address. This is used to remove the overhead of checked array accesses.

By being able to express unchecked array accesses, the AJIT system can move

bounds-check elimination analysis to the front-end. However, given the absence of

analyses in the AJIT VM implementation to verify the safety of such accesses, the

safety semantics of the Java VM design are violated.
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Performance

In this chapter we compare the performance of our annotation-aware Java virtual

machine against the underlying virtual machine implementation, Kaffe, as well as

against a global register allocator. We first discuss the VR and copy annotations.

These annotations were effective in improving the performance of programs in the

SPEC benchmarks suite. We next discuss the swap annotation, which was effective

for some benchmarks.

4.1 Virtual Registers and Copies

To measure the effectiveness of our VR and copy annotations, we modified the

Kaffe JVM to accept our annotated .class files. Kaffe was modified as little as

possible, to make the distinction between annotated and unannotated versions of

the JVM as focused as possible. We begin by describing our experimental setup,

present our results and then discuss our findings.

4.1.1 Methodology

In the following section we describe the specifics of our JVM implementation,

architectural details of the SPARC, the execution environment, and the benchmark

programs used to test our annotations.

Kaffe

Kaffe performs the Java Virtual Machine tasks described in Section 2.3.3, plus

providing JIT translation into native machine code. For both the annotated and

unannotated cases, machine code is generated in a macro-expansion fashion, with

each Java bytecode considered in isolation from those around it and macros being

responsible for generating the machine code. The code generation process begins

by doing some set-up and performing verification.

The standard version of Kaffe works with unannotated bytecodes. When gen-

erating machine-code from unannotated bytecodes, the first stage is a switch

statement over the bytecodes for the JVM. This switch statement is embedded

in a loop over the bytecodes of the method being translated. The branches of the

switch statement contain macros which generate an array of structures containing
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function pointers. These macros implement the semantics of each Java bytecode in

a machine independent fashion.

The second stage of the JIT process occurs as a switch statement over the

operators of the structure array. The intermediate form contains pointers to func-

tions which invoke macros that emit machine code to an in-memory array. After

the code is generated, it is copied to its permanent location and labels are resolved.

Any virtual method tables that refer to this method are now changed to point to the

generated code, rather than to the function for starting code generation.

Our modification to Kaffe works with annotated bytecodes. The annotation-

aware code generator follows the above process closely. The first stage is a loop

over all the bytecodes of the annotated method. Within this loop is a switch

statement over the Java bytecodes. However, in the annotated version, the indi-

vidual branches of the switch contain macros for directly generating machine

code, in our current implementation for the SPARC. Labels are constructed where

needed, which are resolved as in the unannotated code-generator. The generated

code follows the code generated by the non-annotation-aware version as much as

possible.

The unannotated version of the Kaffe JIT does local register allocation rather

than directly emulating the stack-based nature of the Java bytecodes. Such local

register allocation results in a load instruction at the first occurrence of a use of a

value in each basic block. Correspondingly, there is a store of every value defined

in a basic block at the end of the block. In contrast, the annotation-aware code

generator does not generate such loads and stores.

Relevant SPARC Features

The SPARC has several architectural features which are relevant when doing code-

generation.

The most important feature is that the SPARC is a load-store architecture, with

no machine instructions which operate on operands in memory, other than loading

a value from memory into a register or storing a value from a register into memory.

The next most important architectural feature is register windows. The SPARC

organizes its general purpose register set into a collection of register windows.

General purpose registers hold integer values and addresses. There is a floating

point register set, an indexed collection of thirty-two 32-bit registers. A register

window in the SPARC contains twenty-four 32-bit registers. Each window is as-

sociated with an invocation of a method. The register window is divided into three

different eight register sets. The input registers are used for passing the first six

words of parameters to the current method. The last two words of the input reg-
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isters are used for recording information about the stack-based activation record.

The eight local registers are strictly for the use of the current method. The eight

output registers are used for passing arguments to and from the current method to

any method which it calls. Our annotation-aware code-generator properly accesses

incoming arguments by generating references to the input registers.

Execution Environment

For our performance experiments, we used a Sun Ultra-1 workstation with 128

megabytes of RAM. We ran the benchmarks on a quiescent system.

The SPECJVM98 Benchmarks

To measure the performance of our system, the SPECJVM98 benchmarks from the

Standard Performance Evaluation Corporation (SPEC) were used. [13] This corpo-

ration is a consortium of vendors and academics who develop standard programs,

called benchmarks, for use in comparing the performance of different systems. The

SPECJVM98 suite consists of eight programs, covering a range of different applica-

tion areas. The benchmarks are actual applications, not synthetic benchmarks. The

eight benchmarks are described below:

200 check not strictly a benchmark, this tests the overall correctness of the JVM

implementation. It checks for such things as proper implementation of ex-

ceptions, array bounds checking, sub-classing and virtual methods, integer

and floating-point math, etc.

201 compress a text compression and decompression algorithm based upon the

Modified Lempel-Ziv method.

202 jess an expert system shell. This benchmarks reads in a problem definition in

an expert system language and executes the program.

209 db a simple database program. Mainly tests input and output, but also per-

forms in-memory sorting.

213 javac a version of a Java source to Java .class compiler. This is based

upon an early version of Sun’s JDK javac compiler.

222 mpegaudio an MPEG audio decompressor. MPEG is a standard method of

compressing audio data. This benchmarks decompresses input files.

227 mtrt a ray tracer. This program reads in a three-dimensional scene descrip-

tion and uses a ray-tracing algorithm to calculate the rasterization of the

resulting image.
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228 jack a parser generator. This program reads in the description of a context

free language and builds the corresponding tables for a parser for the lan-

guage.

For each of the benchmarks, we produced annotated versions of all the .class

files involved in the benchmarks. In addition to the .class files associated di-

rectly with the benchmark, we also annotated the SPEC testing framework and

Kaffe’s version of the standard class libraries. The standard class libraries are nor-

mally kept in .jar files, an archive format based upon ZIP for holding multiple

logical files in a single physical file. The .class files for the system classes,

such as java.lang.String were kept in .jar files, for both the annotated

and unannotated versions. The .class files for the benchmark classes, such as

spec.benchmarks._200_check.Main were kept in their .class file for-

mat as files in the file system, for both annotated and unannotated versions.. This

configuration is how the SPEC benchmarks are configured to run.

We gathered one static measure: the count of the number of loads and stores

generated by the unannotated benchmarks and the annotated benchmarks. Kaffe

was modified to count the number of load and store machine instructions generated.

These counts are used to measure the amount of load/store removal due to the

annotations. This produces a slightly more dynamic measure of loads and stores

than is seen in other research, as it counts only those loads and stores that occur

in methods that are actually executed. The count does not indicate whether the

individual loads and stores are actually executed.

Dynamic performance measures were also made. Each benchmark was exe-

cuted six times: with and without annotations at problem sizes 1, 10, and 100. Each

benchmark run was done in a separate instance of a JVM. The VM was instructed

to exploit only the VR and copy annotations, although it still had to read and pro-

cess the VR, copy, and swap annotations. The problem size specifies the amount of

input to be processed or the number of iterations to be performed, depending upon

the benchmark. Several different times were measured and are presented below.

The most important is the total time, which includes all time from the beginning of

the execution of the JVM to the very end, including any time spent doing I/O, in-

cluding I/O done during VM initialization, during the benchmark’s execution, and

during the reporting of results by the benchmark framework. The next is the user

time, defined as the amount of time spent executing the entire benchmark, from the

very start of JVM to the end, excluding any time spent performing I/O. The last

is the benchmark time, the time spent from the beginning of the execution of the

benchmark to the end of the benchmark. The benchmark time does not include the

time spent initializing the JVM or the amount of time spent reporting the results. It

does however include the amount of time spent doing I/O during the execution of
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Table 4.1: Load/Store Removal
Unannotated Annotated
Load/Store Load/Store

Benchmark Count Count Ratio
200 91432 82206 0.90
201 88342 82537 0.93
202 104871 85857 0.82
209 89516 83236 0.93
222 151969 131200 0.86
227 99318 85778 0.86
228 116237 101751 0.88

the benchmark.

4.1.2 Static Measures: Results and Discussion

Annotations were appropriate for 11,463 of 13,303 methods (the remainder were

abstract or native methods, or did not use virtual registers). Of these, 1,293 meth-

ods (11%) were not annotated due to implementation restrictions. From available

measures, these unannotated methods did not represent a significant percentage of

execution time.

In Table 4.1 we see the effect of our annotations on the number of load and

store machine instructions generated. The fourth column, “Ratio,” is the ratio of

loads and stores in annotated code to loads and stores in unannotated code. A ratio

lower than 1 indicates removal of loads and stores due to the use of annotations.

Calculating percent reduction over all benchmarks,

1 �

total annotated count
total unannotated count

gives an overall percent reduction of 12%.

As compared to other work in register allocation, where reductions in static

counts of loads and stores of 59% are seen, our reduction of 12% is disappoint-

ing. [11] Their machine, the MIPS, had a larger number of available registers for

allocation than our SPARC, which allows more values to stay in registers, thereby

reducing the number of spills necessary. Also, the environment in that work was a

traditional batch compiler, so safety and its attendant need for verification did not

increase the number of conflicting live ranges, giving the register allocator more

flexibility in assigning live ranges to registers. Additionally, their count is against

what they labeled as “no register allocation,” but it is unclear if that means that no

values are kept in registers at all or if a local register allocation similar to Kaffe’s

is done. If no values are kept in registers, this would be similar to the example on
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Figure 4.1: Total Speedup Versus Problem Size

page 45 where virtual registers 2, 3, and 4 are non-register resident. If their regis-

ter allocator was being compared against a scheme where no values were kept in

registers, the number of loads and stores eliminated would be higher than if it was

compared against a local register allocation scheme.

4.1.3 Dynamic Performance

As described above, we used the SPECJVM98 benchmarks.1 We will examine the

speedups achieved in total run-time, total time spent not doing I/O, and executing

just the benchmark. We will also examine the number of bytecodes and methods

executed that were annotated and the amount of time spent by the annotated and

unannotated JIT compiler.

First, we must give a definition for “speedup.” Drawing from Hennessy and

Patterson, we use the following: [20]

speedup �
time spent executing by unannotated version
time spent executing by annotated version

This gives the best measure of the effect a user can expect when using our annota-

tions.

Dynamic Performance Results

In Figure 4.1, we see the speedup our annotations produce on the total amount of

time spent by each benchmark. On the x axis, we present the problem size on a

1The numbers we report do not strictly follow the SPEC guidelines for reporting benchmarks
numbers. Specifically, our annotator modifies the .class files, which is prohibited under the guide-
lines. However, none of our annotations are specifically tailored to these benchmarks, so we do
follow the spirit of the guidelines.
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logarithmic scale, for convenience. The y axis shows the speedup. Each three-

digit number shows the speedup for the given problem size and benchmark. Note

that for all problem sizes, we see speedups on most benchmarks, with one, 202,

showing over 30%. For all problem sizes, we note that benchmark 227 experiences

a slowdown. This will be explained below in our discussion of the benchmark and

user speedups. Also note that benchmarks 201 and 213 are missing from problem

size 100. They are not present, as both the unannotated and annotated versions

experience “out of memory” errors when executed at problem size 100.

Figures 4.2 and 4.3 show the user time speedup and benchmark time speedup,

respectively. These graphs use the same design as Figure 4.1. From these measures,

we see a similar portrait of our annotations. We also measured the relationship

between the ratio of methods and bytecodes annotated against the problem size.
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Table 4.2: Speedup Summary
Problem Total User Benchmark

Benchmark Size Speedup Speedup Speedup
200 1 1.03 1.07 1.05
200 10 1.01 1.02 1.07
200 100 1.01 1.04 1.07
201 1 1.13 1.13 1.15
201 10 1.05 1.06 1.05
201 100
202 1 0.98 0.99 0.88
202 10 1.05 1.06 1.01
202 100 1.31 1.31 1.31
209 1 1.03 1.05 1.03
209 10 0.81 0.80 0.91
209 100 1.06 1.06 1.06
213 1 1.02 1.00 1.01
213 10 0.96 0.95 1.00
213 100
222 1 1.05 1.06 1.06
222 10 1.07 1.07 1.07
222 100 1.07 1.08 1.07
227 1 0.93 0.94 0.89
227 10 0.93 0.93 0.93
227 100 0.92 0.92 0.92
228 1 1.09 1.09 1.10
228 10 1.16 1.17 1.17
228 100 1.14 1.15 1.14

We modified the JVM to gather information about methods that were executed.

For each run of Kaffe, if the “-jitSummary” flag was given, the number of different

methods which executed and the total number of their bytecodes was recorded.

Further, the number and size for annotated methods was also kept. The results

can be seen in Figures 4.4 and 4.5. Table 4.2 gives the numbers for the speedups

seen in the graphs in Figures 4.1, 4.4, and 4.5. The aggregate percent reduction in

total time, over all benchmarks and problem sizes was 5.4% calculated using the

geometric mean of all percent reductions.

Dynamic Results Discussion

Our 5.4% reduction in total execution time can be compared to work done in other

global register allocators. Chow and Hennessy achieved a 28% execution time

reduction. As discussed above, their system was a batch compilation environ-

ment where the target machine was known. Also, safety concerns did not limit
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the choice of registers available to the register allocator. If we modified our veri-

fication algorithm to do a rudimentary form of liveness analysis, the performance

might improve. By improving the verification algorithm so that VRs are not re-

quired to be monotyped to be verified, values of different types could reside in the

same VR. This would lower the number of registers needed for a method, thereby

improving performance. We would also to have to modify our annotator to insert

edges into the interference graphs to limit VR sharing to those live ranges that have

the same “machine type.” A machine type would be one of the following types:

one word (32 bit) integral, object reference, two word (64 bit) integral, one word

(32 bit) floating, or two word (64 bit) floating. These collapsed types would allow

the appropriate machine register to be used for a VR.

In Figures 4.1, 4.2, 4.3 we see significant slowdowns for benchmark 227. This

raises the question, “What distinguishes this benchmark from the others?” In a

work on removable array bounds checks for Java, Yessick and Jones discovered

that this benchmark was one of two that had a significantly higher percentage of

their loops which had removable bounds checks.[46] The other benchmark iden-

tified there was 222. A removable array bounds check in that paper was an array

reference whose VRs could be easily determined to be a linear induction variable

and would remain in bounds. We postulate from this result that the benchmark

227 has a higher density of array references and that this results in some kind of

interaction with the data cache.

In an attempt to further explain these slowdowns, we examined the impact of

not having 100% coverage for our annotations. Comparing Figures 4.4 and 4.5 to

the speedup graphs in Figures 4.1, 4.2, 4.3, we can see that problem size has little

effect on either the ratio of methods annotated or number of bytecodes annotated.

Also, there is not a correlation between the slowdowns discussed above and the

dynamic annotation ratios. The dynamic bytecodes annotated ratios (Figure 4.5)

does indicate that the annotator’s shortcomings seem to be have a higher impact on

longer methods. This is not surprising, as longer methods are more likely to have

problematic code.

Our VR and copy annotations are effective. In our earlier work, we showed the

effectiveness of our annotations on small problems, such as quicksort and on the

code from Chaitin’s paper. [28, 10] Our work here shows that these annotations

are effective for larger problems. Our current implementation however, does not

capture as much code as possible. Removing the shortcomings in our annotator, as

outlined above, should only improve the performance of our system.
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4.1.4 JIT cost

We measured the relative cost of exploiting annotations by measuring the amount

of time spent in the JIT by the annotation-aware and un-annotation-aware code-

generator.

JIT cost results

In Figures 4.6 and 4.7 we have two different comparisons of the annotation-aware

JIT and the simple JIT. In Figure 4.6 we compare the amount of time spent in

the JIT when running the benchmarks when they were annotated versus when they

were unannotated.

In Figure 4.7 we compare the amount of time spent in the annotated version of

the JIT versus the amount of time spent in the JIT when the files are annotated.

JIT Time Discussion

In Figure 4.6 we see that the annotated version actually is faster than the unan-

notated version. In Figure 4.7, again we see that the annotated version is an im-

provement in the performance of the JIT. From this we conclude that the cost of

exploiting virtual register annotations to generate a register allocation is lower on

average than doing even local register allocation.

4.2 Swaps

The swap annotation, as described in Section 3.3.4, was intended to improve the

performance of code on machines which have a small number of registers. In
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particular, this was intended to be useful for the Intel x86 family of microproces-

sors. However, the swap annotation, as originally formulated, was not effective in

achieving this goal. We will describe how we simulated the effect of the swap an-

notation on a small register machine using a large register machine implementation

and show the performance results. We show the results of our first formulation of

swaps and then an improved formulation where the type restrictions are loosened.

4.2.1 Swap Performance Methodology

To measure the effectiveness of the swap annotation, the same set of benchmarks as

described above, the SPECJVM98 suite, was run. Note that the swap annotation de-

pends upon the presence of the VR and copy annotations. Therefore, a comparison

is made of whether or not the swap annotation provides any improvement over the

VR and copy annotations, rather than comparing against the unannotated case. The

SPARC is not a machine with a small number of registers. Therefore, the SPARC

implementation of the annotation-aware JVM was modified to test the hypothesis

that the swap annotation will be beneficial for small register number machines. A

register limiting mechanism was implemented in the SPARC implementation to

simulate a machine with fewer registers. This was rather straight-forward, as the

JVM already had to deal with handling values which did not fit in a register and

were instead stored on the stack. In Section 3.5.1, the process of loading a value

temporarily into a register and also storing results from a register was described.

The register limiting mechanism was placed in the code for calculating the VR lo-

cation table. This code is called before generating machine instructions for each

method. Machine registers were marked as already being allocated, thereby lim-
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iting the number of registers available when developing the mapping from virtual

registers to physical registers, thereby forcing more values to be stored on the stack.

A command-line flag was added (“-intReg n”) to Kaffe to set the number of physi-

cal registers available to the allocator.

Limiting registers in this fashion captures the essential difference under exam-

ination: do swaps improve performance on machines that have a small number of

registers? Other aspects of a machine’s implementation, such as the size, design,

and number of caches, the speed of memory accesses, etc. can all vary within the

same processor family. By holding these factors constant while varying the number

of registers, the hypothesis can be tested directly.

Some modifications to this register limiting scheme were necessary to account

for the argument passing conventions of the SPARC. As discussed above, the first

six words of method arguments are passed in the input registers. Since Kaffe treats

calls to Java and native code uniformly, the argument passing conventions were

not changed, even when limiting the number of physical registers available to be

allocated. Therefore, any virtual registers which were used for passing arguments

in the first six input registers were retained in those physical registers. Suppose that

the effect of swaps on a CPU that has only two registers available for allocation

is being simulated. Any method that has more than two arguments will not be

simulated faithfully, as all of the arguments that are passed in registers in the host

environment, the SPARC, will remain in registers, thereby increasing the number

of values in registers above the number that are being simulated. This has the

effect of losing simulation fidelity for those methods which pass more arguments

than there are simulated physical registers.

4.2.2 Swap Performance Results

In Tables 4.3 and 4.4, we see the total speedups of annotated code with swaps over

annotated code without swaps, when using “strict swaps”. A strict swap is a swap

that is limited to be between VRs of the same type. For example, if VR 0 is a String

object and VR 1 is an Exception, then no strict swap will be generated between VR

0 and VR 1.

In Tables 4.5 and 4.6, we see the total speedups of annotated code with swaps

over annotated code without swaps, when using “permissive swaps”. A permissive

swap is a swap that is limited to be between VRs of the same “collapsed” type.

A collapsed type is the result of mapping Java’s primitive and reference types into

five categories: one word integral types (byte, char, short, int), two word integral

types (long), one word floating types (float), two word floating types (double), and

reference types. For example, if VR 0 is a String object and VR 1 is an Excep-

72



Draft of April 29, 2002 at 14 : 36

Table 4.3: Strict Swap Speedup Summary, size = 1
Problem Number of Total

Size Benchmark Registers Speedup
1 200 10 0.97
1 200 8 0.98
1 200 6 0.97
1 200 4 0.97
1 200 2 0.97
1 200 0 1.00
1 201 10 0.93
1 201 8 0.99
1 201 6 0.96
1 201 4 1.01
1 201 2 1.00
1 201 0 0.99
1 202 10 0.98
1 202 8 1.01
1 202 6 0.98
1 202 4 1.01
1 202 2 0.99
1 202 0 1.00
1 209 10 0.98
1 209 8 1.01
1 209 6 0.99
1 209 4 1.00
1 209 2 0.98
1 209 0 1.00
1 222 10 0.99
1 222 8 1.00
1 222 6 1.01
1 222 4 1.00
1 222 2 0.97
1 222 0 1.00
1 227 10 1.00
1 227 8 1.02
1 227 6 1.00
1 227 4 1.00
1 227 2 1.07
1 227 0 1.00
1 228 10 1.00
1 228 8 1.03
1 228 6 1.04
1 228 4 0.97
1 228 2 1.03
1 228 0 0.99
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Table 4.4: Strict Swap Speedup Summary, size = 10
Problem Number of Total

Size Benchmark Registers Speedup
10 200 10 0.98
10 200 8 0.97
10 200 6 0.99
10 200 4 0.98
10 200 2 0.99
10 200 0 1.00
10 201 10 1.00
10 201 8 0.99
10 201 6 1.01
10 201 4 1.01
10 201 2 0.96
10 201 0 1.01
10 202 10 1.00
10 202 8 0.99
10 202 6 1.02
10 202 4 1.01
10 202 2 0.98
10 202 0 0.96
10 209 10 0.52
10 209 8 1.00
10 209 6 1.17
10 209 4 0.99
10 209 2 1.17
10 209 0 1.01
10 222 10 1.03
10 222 8 0.99
10 222 6 1.01
10 222 4 1.02
10 222 2 1.01
10 222 0 1.00
10 227 10 1.11
10 227 8 1.31
10 227 6 0.97
10 227 4 0.58
10 227 2 0.91
10 227 0 0.88
10 228 10 1.00
10 228 8 1.01
10 228 6 1.04
10 228 4 0.98
10 228 2 1.02
10 228 0 0.97
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Table 4.5: Permissive Swap Speedup Summary, speed = 1
Problem Number of Total

Size Benchmark Registers Speedup
1 200 10 1.00
1 200 8 1.00
1 200 6 1.00
1 200 4 1.00
1 200 2 0.99
1 200 0 0.99
1 201 10 1.04
1 201 8 1.02
1 201 6 1.01
1 201 4 1.01
1 201 2 1.01
1 201 0 0.93
1 202 10 0.99
1 202 8 0.99
1 202 6 0.99
1 202 4 0.98
1 202 2 1.01
1 202 0 0.97
1 209 10 0.99
1 209 8 1.00
1 209 6 1.03
1 209 4 0.99
1 209 2 0.99
1 209 0 0.98
1 222 10 0.98
1 222 8 1.00
1 222 6 1.00
1 222 4 1.01
1 222 2 1.00
1 222 0 0.98
1 227 10 1.10
1 227 8 1.10
1 227 6 1.10
1 227 4 1.00
1 227 2 1.02
1 227 0 0.93
1 228 10 0.99
1 228 8 1.00
1 228 6 0.99
1 228 4 1.01
1 228 2 0.99
1 228 0 1.02
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Table 4.6: Permissive Swap Speedup Summary, size = 10
Problem Number of Total

Size Benchmark Registers Speedup
10 200 10 1.01
10 200 8 0.99
10 200 6 0.99
10 200 4 0.98
10 200 2 0.97
10 200 0 1.00
10 201 10 1.04
10 201 8 1.07
10 201 6 1.00
10 201 4 1.01
10 201 2 1.00
10 201 0 1.01
10 202 10 1.03
10 202 8 0.99
10 202 6 0.98
10 202 4 1.03
10 202 2 1.00
10 202 0 1.00
10 209 10 0.75
10 209 8 1.04
10 209 6 0.60
10 209 4 1.16
10 209 2 1.17
10 209 0 0.86
10 222 10 1.00
10 222 8 0.98
10 222 6 0.98
10 222 4 1.02
10 222 2 0.99
10 222 0 1.00
10 227 10 1.06
10 227 8 1.01
10 227 6 1.14
10 227 4 1.06
10 227 2 1.01
10 227 0 0.89
10 228 10 1.02
10 228 8 1.02
10 228 6 0.99
10 228 4 1.00
10 228 2 1.00
10 228 0 1.01
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tion, then a permissive swap may be generated between VR 0 and VR 1, as both

Exception and String collapse to the reference type. There is no loss of safety by

using collapsed types, as each VR still has its own storage on the stack that is used

when a swap is applied, so no coercion between types is necessary. The collapsed

types are used to match the mapping of physical registers to VRs for modern ma-

chines. Most modern machines have separate integer and floating-point registers

sets. Also, many modern processors do not yet have 64-bit registers, so 64-bit

quantities must be split across two registers.

4.2.3 Swap Performance Discussion

It is clear that strict swaps do not provide a definite benefit, resulting in slow-

downs of roughly the same order as speedups. However, for one of the bench-

marks, 227 mtrt, swaps provide a benefit for both problem sizes when the register

count is greater than zero. Strict swaps reduce the number of potential swaps by

preventing swaps between values that can be stored in the same physical register

without losing any of Java’s safety guarantees.

A simple model for the behavior of swaps indicates that any swap that is applied

cannot result in a loss of performance. Any VR which is the “raiseVR” of an

applied swap will have at least one load associated with it if the swap were not

applied. This load will be from memory into a register and will occur in the body

of the loop. By adding one load and one store to memory on the boundaries of

the loop and eliminating any associated loads and stores in the body of the loop,

a simple model of program execution would indicate that a swap will always in a

speedup.

This simple model does not account for the slowdowns. In the following sec-

tion, the reason for this behavior will be postulated, based upon the construction of

a code example for which swaps do provide benefit.

Permissive swaps do provide a definite benefit for the same benchmark, plus

one other, 201 compress. Additionally, the number of cases where swaps result in

slow downs is reduced. As will be discussed in Section 5.2.3, a profiler could be

used to guide the insertion of permissive swaps. If profiling indicates that a pro-

gram will benefit from swaps, then permissive swaps can be inserted. If profiling

indicates that swaps will slow down the program or provide no benefit, swaps can

be omitted.

As there is no loss in verifiability from using permissive swaps, they should

always be used in preference to strict swaps when adding swaps annotations. From

our experience with permissive swaps, we expect to derive benefit from deriving

a new form of VR annotation which uses a more sophisticated verification algo-

77



Draft of April 29, 2002 at 14 : 36

public static int testWithArrays() {
int sum1 = 0, sum2 = 0, sum3 = 0;
int sum4 = 0, sum5 = 0, sum6 = 0;
int[] a1 = u;
int[] a2 = v;
int[] a3 = w;
int[] a4 = x;
int[] a5 = y;
int[] a6 = z;
int i;
for (i = 0; i < a1.length; i++) {

sum1 += a1[i];
sum2 += a2[i];
sum3 += a3[i];

}
for (i = 0; i < a4.length; i++) {

sum4 += a4[i];
sum5 += a5[i];
sum6 += a6[i];

}
return sum1 + sum2 + sum3 + sum4 + sum5 + sum6;

}

Figure 4.8: Example Where Swaps Are Not Beneficial

rithm which will not have a requirement for monotyping. This should improve

performance by allowing more values to reside in registers.

An Example for Which Strict Swaps Do Benefit

Given the performance numbers above for strict swaps, it is natural to ask the ques-

tion, “Is it possible to construct an example where strict swaps are beneficial?” The

answer, of course, is yes. Further, a discussion of failed attempts at constructing

an example are beneficial to understanding why the final example does show ben-

efit, but more importantly, when swaps of either type can improve performance in

general.

In Figure 3.8, code with two loops is given. These loops each contain a set of

references to distinct variables, which are live across both loops. This code has too

small a loop trip count for swaps to have a measurable impact. In scaling up the size

of a problem involving loops, it is natural (perhaps) to introduce loops containing

references to arrays. An attempt at producing an example of a beneficial use of

swaps is seen in Figure 4.8. There are several things to note about this example.
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Most importantly, the use of strict swaps on this example did not produce notable

speedups.

There are other things to note. First, each of the for loops accesses eight VRs,

three for the “sum” variables, three for the array addresses, one for the induction

variable, and one shared by the array length and array values. Further, the “sum”

variables are live across both loops, as they are set by their initializers (def), have

uses and defs in the for loops, and have uses in the return statement. On a mi-

nor note, the variables “a1” through “a6” are used to avoid two shortcomings of

the Java compiler and our register limiting mechanism. The array variables “u”

through “z” are class variables initialized in code not shown here. The Java source

to bytecode compiler does not allocate their addresses to slots, instead making

all accesses to these array variables through use of bytecodes for accessing class

variables. The class variables are moved into slots by using such statements as

“int[] a1 = u;.” Since both versions of Kaffe’s JIT always produces ma-

chine code for loading class variables from memory, the memory traffic in the

loops is removed by moving the array addresses into slots. Because values held in

slots are eligible for allocation into physical registers, this eliminates one memory

access per array reference, if there are enough physical registers. The passing of

array variables as parameters to the function is avoided, as these arguments would

not be limited by our register limiting mechanism.

Several attempts were made at manipulating the minor aspects of the program

structure to produce a marked difference between the annotated version with swaps

and the annotated version without swaps. Changing the size of the arrays did not

make a difference. Increasing the number of array references in the loops did not

make a difference. Modifying the simulated number of physical registers did not

make a difference. From this, it was concluded that something other than access to

registers or the stack was affecting the results. Since no I/O was being performed,

this left traffic to main memory as the primary culprit.

To test this hypothesis, the motivating example of Figure 3.8 was returned to.

There, all variable references inside the loops were to slots. The code in Figure 4.9

was written and measured. This code has no heap accesses in its inner loops. The

effect of these changes is shown in Figure 4.10. When the number of registers is

sufficient, i.e. when greater than eight, there are no speedups. With a lower number

of registers, the swaps become quite effective until the number of physical registers

is insufficient to hold enough active values.
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public static int testNoArrays() {
int sum1 = 0, sum2 = 0, sum3 = 0;
int sum4 = 0, sum5 = 0, sum6 = 0;
int i;
int start = 1;
for (i = 0; i < arraySize; i++) {

sum1 = i + start;
sum2 = i + start + 1;
sum3 = i + start + 2;

}
for (i = 0; i < arraySize; i++) {

sum4 = i + start + 3;
sum5 = i + start + 4;
sum6 = i + start + 5;

}
return sum1 + sum2 + sum3 + sum4 + sum5 + sum6;

}

Figure 4.9: Example Where Swaps Are Beneficial
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Figure 4.10: Contrived Swap Effectiveness
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4.2.4 Summary of Swaps

Swaps improved the performance of code, but only when using permissive swaps

and only for some benchmarks. It is possible that the swap annotation could be-

come more generally effective in the presence of more aggressive optimizations

such as redundant load store elimination. Use of a profiler to determine when to

add permissive swaps would provide the balance between transmission time and

execution time.
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Future Work

We have shown that it is possible to compute low-level optimizations that are

machine-independent, communicate them as annotations, and then exploit them.

How does this effect the implementation of mobile code and the JVM in partic-

ular? The use of annotations broadens the design space of virtual machines, as

high-performance no longer depends on implementing complicated optimizers in

every VM. As one of the primary goals behind choosing virtual machines is to

lower the entry barriers to new devices, annotations such as we have developed

lower the performance cost that must be paid. The development of annotations

covering more low-level optimizations will further improve the situation.

5.1 Immediate Questions

While we have shown the potential for a useful technique in the implementation of

portable virtual machines, there are important immediate questions still open.

1. Are the virtual register assignments worth the transmission cost versus doing

global register allocation in the JVM?

2. How much does monotyping a virtual register cost in terms of lost opportu-

nities to allocate the register for typical Java functions?

3. How effective are these techniques on machines with fewer and more re-

stricted registers than the SPARC?

We intend to aggressively address these issues in the near future as our implemen-

tation matures. It is our intention to answer these questions without compromising

the mobile code constraints of portability and security.

5.2 Long Term Work

Dealing with the top of the memory hierarchy, registers, is certainly attacking the

low-hanging fruit of low-level optimizations. Doing a good job of register alloca-

tion is critical for achieving high performance in compiled code. That out of the

way, it is time to build a ladder and pluck other optimizations off the tree. Some

of these optimizations deal with the other parts of the memory system—the caches
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and the virtual memory system. Other optimizations deal with garbage collection,

instruction fetching, thread scheduling, and unnecessary synchronization removal.

The ladder that is needed to pick these optimization fruits is an effective run-time

profiling system that transmits concise information from the client to the server.

We will begin the exposition of potential future work by describing simple

optimizing transformations for addressing the above issues and how annotations

can be used to communicate from the front-end to the back-end. We will then

describe the requirements of our profile system and segue into details of potential

future work.

5.2.1 Backend Transformations

When one examines the past two decades of compiler research, one finds a plethora

of analysis techniques, optimization heuristics, and micro-architectural enhance-

ments. A careful examination of the transformations that are performed upon the

instructions and data of a program that are the result of the application of these

sophisticated ideas results in a much simpler picture. Many transformations that

occur can be described as moving, copying, or placing items (data or instructions)

in memory so as to improve performance.

For example, trace (or superblock) scheduling is the placement of program

instructions in such a fashion that the most commonly executed trace (path) through

a program is efficiently fetched by the CPU’s instruction decoding unit.[23] This is

a placement and copying transformation on the original instructions of a program.

Instructions from various basic blocks are placed together in a linear fashion. These

basic blocks are also copied off-trace to handle the less frequent paths through the

program.

Another example is proper alignment and chunk-sizing of arrays. [17] Scien-

tific codes are full of tight loops over arrays. The manner in which an array is laid

out in memory and the way the elements of an array are accessed strongly interact

with the data cache of a processor. By properly aligning an array in memory and

potentially extending the size of its rows, significant improvements in the cache

miss rate of the data cache can be made.

The proper exploitation of both of these transformations depend upon both

sophisticated compiler analyses and on specific machine-dependent information,

much as our existing register allocation work does. Like our previous work, we

propose the development of a set of annotations that assign the sophisticated anal-

ysis to the server and the exploitation of this analysis to the client. The data and

instruction transformations can even be combined in an annotation describing how

data and instructions should be placed for threaded programs on a multiprocessor
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system.

5.2.2 Transformation Annotations

Let us examine in a little more detail how we might express transformations as

annotations. Our current virtual register (VR) annotation is an array of unsigned

bytes, where sequences of VRs in this array specify the register assignment for a

bytecode in the “Code” attribute of a method. The assignment of VRs is dense,

as most bytecodes are assigned one or more VRs, so no explicit tagging of VRs

with program counters is used to associate VRs to bytecodes. Our annotation for

manipulating VR priority, the swap, is different. A swap annotation consists of a

sequence of structures, each element representing an individual swap. Each swap

contains a program counter (PC) where the swap is to be applied, along with two

bytes, one each for the VRs whose priorities are being swapped. This encoding is

used because swaps are infrequent. Our proposed set of annotations will be closer

in encoding to the swap annotation than to the VRs.

How would we encode a trace scheduling annotation? The JVM as part of its

verification procedure finds the set of basic blocks of a method. We could encode a

trace schedule for a method by listing the leader PCs of the basic blocks that form

the trace. When the JVM sets about generating machine code, it would attempt

to place the machine code associated with the trace in linear sequence and place

the off-trace code some place out of this sequence. If the code on the trace has a

control-flow structure that is too complicated for a particular JVM to handle, then

it can ignore the annotation and simply proceed as normal.

The decoupling of annotation generation from annotation exploitation is im-

portant. First, by separating the analysis algorithms needed for annotation gener-

ation from their use, new optimization techniques can be used without necessarily

changing the implementation in the JVM. Second, JVM implementors can choose

which annotations are worth implementing for their particular application. Thus, a

JVM implementor for a machine which has an extremely small instruction cache

would properly decide not to implement a trace scheduler or would place a tight

upper bound on the code size of any potential trace. This is a clear example of our

separation of machine independent analysis from machine dependent exploitation.

5.2.3 Instruction and Data Profiler

The size of traces has always been a problem in doing profile-guided optimization.

Separating the execution environment from the front-end consumer of the profile

information with a network exacerbates the problem. One solution worth examin-

ing is to selectively send profile information only for those methods that are “hot,”
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i.e. frequently executed. Another part of the solution to examine is compression of

the profile results.

Once such a profiler has been built, then several possible optimizations become

feasible.

5.2.4 Trace Scheduler

One possible optimization is trace scheduling. In the front-end, one would use

the profile information of edge and/or path frequencies to reconstruct the most

frequent traces. In the back-end, one would build a code placement and replication

facility to build the traces and the corresponding off-trace “fix-up” code. One part

of such work would be to obtain dynamic information about the instruction cache.

An examination of instruction scheduling within the trace, using analysis in the

back-end, would also be useful.

5.2.5 Redundant Load/Store and Synchronization Removal

In the Java Virtual Machine instruction set architecture, there are bytecodes de-

voted to performing loads and stores of heap-allocated data structures. In our cur-

rent code-generation scheme, these loads and stores are mandatory, i.e. they always

result in an actual load or store in the generated machine code. If Java programs

were strictly sequential or communicated with other threads using some limited

communication channel, then traditional load/store elimination could be done in

the server and either transmitted to the client through a relatively simple annota-

tion or by rewriting the bytecode before it is sent. However, Java uses a shared

memory model of thread communication, which precludes the use of traditional

load/store elimination optimization techniques. One solution worth investigating

is whole program analysis with timestamping of the .class files. If the times-

tamps of all the .class files for a program do not match, then the load/store

elimination annotation is ignored. Unnecessary synchronization removal is han-

dled similarly. One problem with the approach is that the standard packages which

the user program is analyzed against are not necessarily the same as the packages

in the JVM where the program will be executed. One could devise an annotation

that states the requirements that the user program makes on the standard packages.

If the client JVM’s packages do not meet these requirements, then the load/store

elimination annotation is ignored. This should be fairly inexpensive to perform at

run-time, as the requirements of the user program will be determined by the front-

end when the user’s program is annotated. The standard packages for the JVM in

the client will be analyzed and their constraints recorded when the JVM is built.

The situation here is precarious—many of the potential problems that an incorrect
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analysis can induce can only occur (under the current understanding of the Java

Memory Model) in systems with more than two processors.[38]

5.2.6 Thread Scheduling and Garbage Collector Hints

A technique for improving the performance of multi-threaded programs in a mul-

tiprocessor system is to do “gang-scheduling” of processes that communicate with

each other. In gang-scheduling, threads that should be run together are assigned

separate processors and scheduled to run concurrently. Also, heap data should be

properly distributed to reside on the same processor as the thread that will use it the

most. We suggest an annotation for the invocation of thread constructors that both

identifies those threads that belong together and also separates them onto differ-

ent processors. Threads should be brought into execution at the same time if they

communicate with each other. Separate threads should be separated onto different

processors if they can operate in parallel. If two or more threads operate as corou-

tines, then they should be placed onto the same processor if possible. It would

also be useful to place annotations on heap memory allocations so that memory

is clustered on the same processor with the thread the most frequently accesses it,

particularly if the thread doing the allocation isn’t the thread that uses the memory

being allocated. The work would involve obtaining information dynamically about

the number of processors.

Another potential optimization is to generate hints for the garbage collection

(GC) system. One frequently used GC technique is generation scavenging. In this

technique, objects are allocated in an initial area which is frequently scavenged.

Objects that survive their first scavenging are “tenured” and moved into an area

that is less frequently scanned. Information about allocations which result in long-

lived objects can be communicated as annotations on the heap-allocation bytecode.

Such an object can then be immediately tenured and thereby avoid being scanned

and copied. The work here would involve changing the memory allocation system

to use the provided hints from the annotation.

5.2.7 Array-based Data Cache Optimization

A final suggested optimization is to improve data-cache performance for array

codes. There is a body of complex analysis techniques for determining the cache-

miss behavior of programs loops over arrays. These analysis techniques combine

information about the structure of the loop code with information about the cache

size. The result of this analysis is to determine the precise alignment and padding

for the array(s) that will result in the fewest number of cache misses. Alignment

is the determination of the beginning address of the array, expressed as the offset
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from some power-of-two boundary. Padding is the determination of how many

additional elements should be added to the rows of an array. Again we see an in-

stance of super-linear analysis and linear exploitation. One could annotate an array

allocation with two equations, one expressing the alignment in terms of the cache

size(s) (total size and cache line size), the other expressing the padding in similar

terms. The back-end would merely plug the machine-dependent values (the cache

sizes) into the results of machine-independent analyses (the equations) to obtain

the appropriate alignment and padding. This work would involve modifying the

run-time system to allow control over the alignment and row sizes of allocated

arrays. Also, information must be obtained dynamically about the data cache.

5.3 Broader Questions

This work can also be expanded in a less linear fashion by examining different

verification methods, different system architectures and different language models.

Below are itemized some possible expansions, followed by a brief explanation of

each of the extensions.

� Proof-carrying code for stronger verification

� Caching compile server

� Annotations for other VMs

� Annotations for other binary translators

5.3.1 Proof-carrying code

Our current system and the proposed extensions detailed in Section 5.2 rely on a

fairly simple verification model. VRs are verified using an extension of the stan-

dard JVM verification procedure, insuring that every VR access is type-compatible

with all other accesses. Our other implemented annotations also pass verification

based upon the type compatibility of VRs. The annotations suggested immediately

above are inherently safe, with the only potential effect of malicious annotation

being performance degradation. Such simple verification techniques could be en-

hanced, thereby allowing the expression of optimizations through annotations that

are not as easily verified. One such verification technique is proof-carrying code.

[12] In this technique, proofs for doing verification are transported along with the

corresponding code. The client verifies the code by checking that the proof and the

code match and that the proof is correct. This would broaden the set of potential

optimizations without losing verifiability.
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5.3.2 Caching Compile Server

Running annotated code with an annotation-aware VM is great, but what about

code that isn’t annotated? If the code that is unannotated is downloaded frequently

by clients with a shared infrastructure, then we can amortize the annotation cost

across multiple clients. Then it would be useful to have a proxy server that handles

requests for code and notices when there is duplicated code being downloaded.

When such duplicate code is detected, then the code is placed on a queue of code

to be compiled. In a separate thread, the code is dequeued, annotated, and cached.

Subsequent requests for the code can then be answered with the annotated version.

5.3.3 Annotations for other VMs

Just as Java isn’t the only language implemented using a virtual machine, it also

isn’t the only language whose performance could be improved with annotations.

There has already been work annotating Prolog for memory optimizations. [19]

5.3.4 Annotations for Binary Translators

Occasionally, there are windows in processor evolution where, for the sake of com-

patibility, code is generated for one processor, even though newer, higher perfor-

mance processors are used to execute the generated code. In such situations, it

can be useful to annotate the code and have the annotation recognized in the exe-

cution environment. The simplest annotation would be to mark traces that would

most benefit from doing processor specific instruction reordering. One example

of this would be differences between versions of Intel Pentium processors. [26]

The encoding of annotations could be handled in various ways—embedding the

annotations in a extension section of the object file format, named tables in the

initialized data part of the object file, or inside unreachable code.
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Conclusions

Producing high-performance code has been an important part of high-level lan-

guage implementation since the first FORTRAN compiler. Java is just the latest

language where tradeoffs between programmer power and implementation ease

had to be made. The implementation choices for Java are richer than for most

modern languages. This is because Java was designed to be a mobile code system,

in addition to performing as a more conventional language. Mobile code has many

interesting language implementation problems. Mobile code is compiled and ex-

ecuted in an environment that differs from traditional batch compilation systems.

We have shown that it is possible to do machine-dependent optimizations on mo-

bile code without an optimizing compiler in the client. We review here the issues

raised, how we addressed them, and how effective these efforts were in achieving

our goal.

6.1 Requirements for Mobile Code

The distinguishing characteristic of mobile code is that code is designed to be

stored on a server machine and delivered across a network to a computing device,

potentially one that is portable. This characteristic adds additional requirements to

the compiler and the run-time system beyond a desire for high-performance. Code

in a mobile system must execute on devices that vary widely in their capabilities—

CPU, memory, etc. Mobile code is separated from its execution environment by a

wireless network, which may be several orders of magnitude slower than a typical

local wired area network. Further, there is a lower level of trust between server and

client. In a mobile computing environment, the separation between the server and

the client is both technological and sociological. Technically, the server is sepa-

rated from the client by various routers and other network connections, but most

importantly by “air”, i.e. transmission across a medium where messages are easily

intercepted. Sociologically, the server and the client are much more likely to be-

long to different organizations than in the batch compilation environment. These

environmental demands create the requirements that mobile code be portable, safe,

and transportable. These requirements have all affected this work.
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6.2 Design for Mobile Code Annotations

Portability drove the requirement that our annotations be machine independent.

For code to be portable, it must be expressed in a form that allows it to be exe-

cuted in differing environments. Java’s bytecodes can be interpreted, which is a

well-known way of achieving portability. However, to obtain better performance,

JVMs have implemented just-in-time compilers. Our annotations work with these

VMs by providing machine independent optimization information. We achieved

machine independence by designing our annotations for a virtual machine model

that matches the needs of a just-in-time compiler, one consisting of registers and

stacks.

Safety drove the requirement that our annotations be verifiable. For code to

be safe, it must either have no ability to do anything unsafe or be checked and

prevented from executing if it cannot be proven safe. Therefore, mobile code must

be verifiable. Our annotations are verifiable and furthermore the verification is

a natural byproduct of the verification done on the Java bytecodes, avoiding the

potential cost of a separate verifier for the annotations. Our system has the further

advantage that the verification can be done without adding any information to the

.class file beyond that needed to communicate the optimization information.

This is in contrast to other mobile code systems where the size of the information

needed for verification is roughly of the same size as the code it verifies.[12] It is

also in contrast to other work on annotations which were not verifiable.[5]

Transportability drove the requirement that our annotations be as small as pos-

sible. The choice of virtual registers tightly associated with bytecode is driven by

this concern. As seen in our chapter on implementation, there are many analyses

that are performed by an optimizer. There we saw control flow graphs, reachabil-

ity, def-use chains, liveness, interference graphs, etc. Any of these could have been

packaged as an annotation and beneficially used by a just-in-time compiler. How-

ever, the representation of these analysis would not be as compact as our virtual

register annotation.

6.3 Mobile Code Annotation Effectiveness

The effectiveness of our approach must be analyzed in two ways. First, we must

consider our annotation-aware approach against sophisticated JVMs with optimiz-

ing just-in-time compilers. Second, we must consider the effectiveness as com-

pared to a minimal JVM which is not annotation-aware.
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6.3.1 Annotation-aware versus Optimizing JITs

Comparison to more sophisticated JVMs is important, as this is the current ap-

proach taken by most commercial JVMs which implement a just-in-time compiler.

As we saw in Section 4.1.4, use of our annotations adds little to the amount of

time spent in the just-in-time compiler. In comparing our annotation-aware min-

imal JVM to more sophisticated JVMs, there are several considerations to make.

We compare annotation-aware JVMs directly against non-annotation-aware JVMs,

consider hybrid approaches, and examine how broadly applicable both techniques

are.

First, what is the comparative performance between an annotation-aware JVM

and a sophisticated JVM which does not make use of any annotations that it en-

counters? This largely depends upon the nature of the programs. If the programs

only execute for a short amount of time, then the annotation-aware VM has an ad-

vantage, as the cost of utilizing the VR and copy annotations is only slightly more

expensive than doing a minimal JIT compilation without annotations. For pro-

grams that execute for a longer period of time, the situation is murkier. Certainly,

optimizing JITs can produce better code than a minimal JIT. However, the price

must be paid for doing the required analyses. Theses analyses take super-linear

time to perform and any time spent doing analysis is time spent not executing the

user’s program. Our annotation-aware gets the benefits of such analyses in only

linear-time. Whether current optimizing JITs perform the proper amortization of

analysis versus execution when compared to our annotation approach is difficult to

decide without holding every other factor constant. Comparison would require that

a similar low-level code-generator be used, that similar approaches to VM startup

be taken, the same native methods be used for linking the system classes to the

underlying operating system, etc. We see here that an annotation-aware JVM is the

right approach for programs that run for a short amount of time and may be the

right approach for others.

Second, what if the sophisticated JVM did use the annotations? A JVM that

did so would have to integrate the added information provided by the annotation

into its intermediate representation. All of the JVMs that we examined in Chapter

2 had a register-based intermediate form. Such an intermediate form seems ideal

for integrating with our VR annotation. The copy annotation also should be easy

to handle with a register-based intermediate form by generating a move instruction

with the appropriate register arguments. Our swap annotation would possibly be a

little more difficult, as the intermediate form early in the compilation process may

not be configured to make use of detailed information about physical registers.

However, as we saw in Section 2.2.4, determining where to place spill code is one
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of the tasks in the Briggs-Chaitin register allocator. The information provided by

the swap annotation might prove useful in this task. Here we see that annotations

provide useful information even to sophisticated optimizing JITs.

Lastly, what if the client environment is memory-constrained? With Java run-

ning in devices ranging from cell phones to multi-processor mainframe computers,

it is necessary to consider the implementation of a JVM in a memory-constrained

environment. Every task performed by a JVM beyond the essentials adds to the

amount of memory that the device must have to execute Java programs. Sun has

defined several small virtual machines which only implement a subset of the Java

VM bytecodes and of the Java system classes. These VM designs are driven by

a desire to lower memory requirements as compared to the standard VM. Addi-

tionally, these VMs only perform interpretation, rather than using a JIT. From this,

we see that there is demand for Java (or Java-like) VMs for memory constrained

devices. Just as in most computing environments, higher-performance in memory-

constrained environments is desirable if the price is right. Unfortunately, analyses

done by sophisticated JVMs have a memory cost. There is memory needed to

store the code implementing the analyses. This storage is significant, as most of

the code in an optimizing compiler is dedicated to optimizations, rather than to the

fundamentals of compilation. There is also memory needed to store the data for

the analyses. This can also be significant, as many analyses require storage that is

larger than the code being analyzed. Here we see that annotations are the proper

response to the desire to obtain high-performance when sophisticated JVMs have

too high a memory cost.

6.3.2 Annotation-aware versus Pure Minimal JITs

To test the effectiveness of our design, we implemented the virtual register, copy,

and swap annotation in a Java virtual machine. This implementation was embedded

inside the Kaffe Java virtual machine, a minimal, just-in-time compiler JVM. Kaffe

was well-suited for our tests, as it allowed us to focus on the contribution that our

annotations could make.

The swap annotation as presented here did not improve performance. While it

did not ever significantly degrade performance, it also never produced significant

speedups. Fortunately, the swap annotation is small enough that the added trans-

mission costs would be negligible. We saw that it is possible to construct programs

for which the swap annotation had tremendous effect—a 200% speedup. There-

fore, more work should be done on an analysis to more accurately determine when

swaps would be effective, along with changes to the verfication requirements.

The paired annotations which are the most widely applicable, the VR and copy
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annotations, were benchmarked separately from the swap annotation. Our perfor-

mance experiments proved that these two annotations are an effective way of im-

proving the performance of a minimal JVM, Kaffe. There we saw total speedups

for most benchmarks clustered in the range from 3% to 20%, with one case achiev-

ing over 30% speedup, and only one benchmark that saw a slowdown over all

problem sizes. This proves that annotations are an effective way of improving the

performance of mobile code.
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Semantics of “VR” Annotation

This chapter gives a detailed description of the “VR” annotation by describing

the virtual register usage and code generation for various classes of bytecodes.

This classification is based on the purpose of the bytecodes, not necessarily the

similarity of virtual register usage. The virtual register annotation use an unsigned

one byte quantity for each virtual register. The values 0–254 indicate a valid virtual

register number, 255 indicates no virtual register assignment. The notion of virtual

register here is similar to that found in the literature.

f

scalar loads
�
ldc, ldc w, ldc2 w, iload, lload, fload, dload, aload, iload 0, iload 1,

iload 2, iload 3, lload 0, lload 1, lload 2, lload 3, fload 0, fload 1, fload 2,

fload 3, dload 0, dload 1, dload 2, dload 3, aload 0, aload 1, aload 2, and

aload 3 �
These bytecodes utilize one virtual register indicating where the result of the

load is to be placed. The source of the load is either the constant pool (for the

ldc and ldc w instructions) or the stack. The code generator produces a load

machine instruction into the physical register associated with the indicated

virtual register. To see how the virtual register is translated into a physical

register, see the section “Non-register Resident Values on a Three-Address

Machine” above.

array loads
�
iaload, laload, faload, daload, aaload, baload, caload, and saload �

These bytecodes utilize three virtual registers, one indicating the address of

the array, one indicating the index into the array, and the third indicating

where the result of the load is to be placed. Unlike the previous class of

load instructions, a load machine instruction is always generated, due to the

perceived difficulty in allocating array variables to registers.

scalar stores
�
istore, lstore, fstore, dstore, astore, istore 0, istore 1, istore 2, is-

tore 3, lstore 0, lstore 1, lstore 2, lstore 3, fstore 0, fstore 1, fstore 2, fs-

tore 3, dstore 0, dstore 1, dstore 2, dstore 3, astore 0, astore 1, astore 2,

and astore 3 �
These bytecodes utilize one virtual register, indicating the source of the store.

The code generator generates a machine language store.
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array stores
�
iastore, lastore, fastore, dastore, aastore, bastore, castore, and sas-

tore �
These bytecodes utilize three virtual registers, one for the array reference,

one for the index, and one for the value to be stored. Unlike the previous

class of store instructions, a store machine instruction is always generated,

due to the perceived difficulty in allocating array variables to registers.

stack manipulations
�
pop, pop2, dup, dup x1, dup x2, dup2, dup2 x1, dup2 x2,

and swap �
These bytecodes utilize no virtual registers.

binary ops
�
iadd, ladd, fadd, dadd, isub, lsub, fsub, dsub, imul, lmul, fmul, dmul,

idiv, ldiv, fdviv, ddiv, irem, lrem, frem, drem, ishl, lshl, ishr, lshr, iushr, lushr,

iand, land, ior, lor, ixor, lxor, lcmp, fcmpl, fcmpg, dcmpl, and dcmpg �
These bytecodes utilize three virtual registers, the first two for the arguments,

and the third for the result.

unary ops
�
ineg, lneg, fneg, dneg, i2l, i2f, i2d, l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l,

d2f, i2b, i2c, and i2s �
These bytecodes utilize two virtual registers, the first for the input, and the

second for the result.

two argument conditional jumps
�
if acmpeq, if acmpne, if icmpeq, if icmpne,

if icmplt, if icmpge, if icmpgt, and if icmple �
These bytecodes utilize two virtual registers, one for each argument.

one argument conditional jumps
�
ifeq, ifne, iflt, ifge, ifgt, ifle, ifnonnull, and

ifnull �
These bytecodes utilize one virtual register, for the argument.

unconditional jumps
�
goto, goto w, and return �

These bytecodes utilize no virtual registers.

finally handling jumps
�
jsr, ret, and jsr w �

The jsr and jsr w instructions are to defined to place the return address on

the stack. One virtual register is used to contain this return address. The ret

instruction has one virtual register which contains the address to return to,

placed there by one of the jsr instructions.

value returns
�
ireturn, lreturn, freturn, dreturn, and areturn �

These bytecodes utilize one virtual register number, indicating what register

contains the value to be returned.
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function invocations
�
invoke virtual, invoke special, invoke static, and

invoke interface �
For the invoke virtual, invoke interface, or invoke special instruction, one

virtual register for the address of the object whose method is being invoked,

plus one virtual register for each argument to the method, plus one virtual

register if the method has a return value. For the invoke static instruction,

one virtual register for every argument to the function, plus one virtual reg-

ister if the function has a return value.

object creation
�
new, newarray, anewarray, and multianewarray �

For the new instruction, one virtual register number, indicating what register

the address of the newly created object should be placed into. For the newar-

ray and anewarray instructions, two virtual registers, one being the number

of elements of the array to be created and the second indicating what reg-

ister the address of the newly created array should be placed into. For the

multianewarray instruction, the instruction will indicate the number of di-

mensions and the annotation will be that many virtual registers, indicating

which register the size of each dimension of the array to be allocated will be

located in, plus one more for the address of the newly created array. For all

object creation bytecodes, the code generator creates a function call to the

free store allocator and potentially a register-to-register move to transfer the

address from the return register to the indicated register.

constants
�
aconst null, iconst m1, iconst 0, iconst 1, iconst 2, iconst 3, iconst 4,

iconst 5, lconst 0, lconst 1, fconst 0, fconst 1, fconst 2, dconst 0, dconst 1,

bipush, and sipush �
These bytecodes utilize one virtual register number, indicating which reg-

ister the constant should be placed into. (NB: a peephole optimizer could

possibly fold many of these into an addressing mode, particularly the integer

constants.)

no operation
�
nop �

This bytecodes utilizes no virtual register.

exception throwing
�
athrow �

This bytecode utilizes one virtual register number, indicating what register

contains the address of the Throwable object.

monitor traversal
�
monitor enter, and monitor exit �

These bytecodes utilize one virtual register, indicating the object whose mon-

itor is to be used.
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dynamic type checking
�
checkcast, and instanceof �

For the checkcast instruction, one virtual register, for the object whose type

is being checked. For the instanceof instruction, two virtual registers, one

for the object whose type is being checked and one for the result of the type

check.

jump tables
�
tableswitch, and lookupswitch �

These bytecodes utilize one virtual register, for the value to switch on.

field manipulation
�
getstatic, putstatic, getfield, putfield, and arraylength �

For the getstatic instruction, one virtual register to contain the result. For the

putstatic instruction, one virtual register to contain the value to put. For the

getfield instruction, two virtual registers, one for the address of the object

being referenced, and one for the result. For the putfield instruction, two

virtual registers, one for the address of the object being referenced, and one

for the value to put. For the arraylength instruction, two virtual registers,

one for the address of the array being referenced and one for the length of

the array.

increment
�
iinc �

This bytecodes utilizes one virtual register for the local variable being incre-

mented.
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