
Lightweight and Generative Components I:
Source-Level Components

Sam Kamin, Miranda Callahan, and Lars Clausen

{kamin,mcallaha,lrclause}cs.uiuc.edu
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract. Current definitions of “software component” are based on
abstract data types — collections of functions together with local data.
This paper addresses two ways in which this definition is inadequate: it
fails to allow for lightweight components — those for which a function
call is too inefficient or semantically inappropriate — and it fails to allow
for generative components — those in which the component embodies a
method of constructing code rather than actual code. We argue that both
can be solved by proper use of existing language technologies, by using a
higher-order meta-language to compositionally manipulate values of type
Code, syntactic fragments of some object language. By defining a client
as a function from a component to Code, components can be defined at
a very general level without much notational overhead.
In this paper, we illustrate this idea entirely at the source-code level,
taking Code to be string. Operating at this level is particularly simple,
and is useful when the source code is not proprietary. In a companion
paper, we define Code as a set of values containing machine-language
code (as well as some additional structure), allowing components to be
delivered in binary form.

1 Introduction

The programming world has long sought methods of dividing programs
into reusable units, fundamentally altering the way in which programs
are created and dramatically increasing productivity. Current notions of
components as abstract data types (such as classes and, on a larger scale,
COM objects and the like) have been very successful. However, we be-
lieve that to take the next step in increased productivity, two types of
components will need to be accommodated that do not find a place in
current component technologies. One of these is “lightweight” components
— those that cannot, either due to cost or for semantic reasons, be imple-
mented as function calls. Another are the “generative” components, those
which are used to build other programs. We are particularly interested in

K. Czarnecki and U.W. Eisenecker (Eds.): GCSE’99, LNCS 1799, pp. 49–62, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

50 S. Kamin, M. Callahan, and L. Clausen

the latter, as we believe the only way to effect major change in how soft-
ware is constructed is to find a way to implement methods of computation
— algorithms, idioms, patterns — rather than just programs.

The thesis of this paper is that a method for implementing such com-
ponents is within our grasp, using existing programming technologies.
Our proposal is both general and conceptually simple. Define a Code
type, whose members represent the “values” of syntactic fragments of an
imperative object language. Suppose these values can be built composi-
tionally — that is, that the values of compound fragments can be derived
from the values of their sub-fragments. Then, embed the Code type wit-
hin a higher-order meta-language. The language will provide a variety of
types that can be built over the Code type, such as lists of Code values,
functions from Code to Code, etc. A client is then just a function from a
component to Code, and the component can be any value that is useful
to the client. Given a quotation/anti-quotation mechanism for defining
constants of type Code, this proposal provides a powerful, general, and
notationally clean mechanism for writing clients and components.

This paper introduces very little new technology. Rather, it demon-
strates how existing technologies can be adapted to overcome the short-
comings of current software components. We do not pretend to present a
complete solution, but rather to sketch a plausible approach, one which is
marked by its simplicity and generality. A complete and practical solution
would need to contend with issues of security and portability; would ide-
ally be notationally even cleaner than what we have done; and would, of
course, have a robust and efficient implementation. Some technical pro-
blems standing in the way of realizing these goals are discussed in the
conclusions.

We operate here entirely at the source-code level. For us, Code is just
“syntactic fragment” or, more simply, “string.” Components are sets of
values that aid in the construction of source programs. (Think of them
as higher-order macros.) Source-level components can be useful in “open
source” environments, and also provide the simplest setting in which to
illustrate our thesis. A companion paper [6] extends this to binary-level
components.

The next section elaborates on the basic idea of the paper and gives
our first example. Sections 4 and 5 present two more examples. Section 6
discusses related work. The conclusions include a discussion on future
research suggested by these ideas, as well as a brief synopsis of the work
described in the companion paper.

Lightweight and Generative Components I 51

2 Code and Components

Our central thesis is that a powerful component system can be obtained
by the expedient of defining an appropriate Code type in a functional
language (called the meta-language). This type represents the “value” of
programs and program fragments in some object language. The “value”
may be the code produced by that fragment, or the function it calculates
(in the denotational semantics sense), or anything else, so long as values
can be built compositionally — that is, the value of a compound fragment
must be a function of the values of the fragments it contains.

Given the definition of Code, the meta-language provides a variety
of useful type constructions, such as lists and functions, and is itself a
powerful and concise language in which to program. A component is a
value in the language, and a client is a function from the type of the
component to Code. The implementation of a quotation/anti-quotation
mechanism to facilitate the creation of Code values also add notational
convenience.

In this paper, we give Code the simplest possible definition: Code =
string. A more abstract approach would be to define code as abstract
syntax trees, but it would make little difference for the examples in this
paper; see the end of section 6 for a further discussion of using AST’s.

All syntactic fragments correspond to values of type Code. There is
no distinction made between different kinds of values: expressions, state-
ments, etc. However, for clarity of exposition, we will use subscripts to
indicate the intended kind of value. Bear in mind that there is only one
type of Code; the subscripts are merely comments.

In our examples, the meta-language is a functional language similar
to Standard ML [5], called Jr, and the object language is Java [4]. One
syntactic difference between Jr and Standard ML is the anti-quotation
mechanism of Jr, inspired by the one in MetaML [9]. Items occurring
in double angle brackets << · · · >> are syntax fragments in the object
language. Thus, they can be thought of as constants of type Code, except
that they may contain variable, “anti-quoted” parts, introduced by a
backquote (‘); these are Jr expressions that must evaluate to Code.

A simple example is this “code template:”1

1 The notation “fn arg => expr end definitions a one-argument function in Jr. Note
that the function is anonymous. It can be given a name, like any other value, by
writing val funname = fn A more conventional-looking alternative syntax is fun
funname arg = expr.

52 S. Kamin, M. Callahan, and L. Clausen

fn whatToPrint =>
<< public static void main (String[] args) {

System.out.println(‘whatToPrint);
}>>

end

This template is a function from an expression of type String to a
function definition; i.e., the template has type Codeexpr. of type String →
Code function def.. To get the function definitions, we can apply it to a sim-
ple expression like <<"Hello, world!">>, or something more elaborate,
like <<args.length>0?args[0]:"">>.

To summarize: what appears inside the double-angle brackets is in
Java syntax and represents a value of type Code; within these brackets,
the backquote introduces an anti-quoted Jr expression returning a value
of type Code, which is spliced into the larger Code value.

3 A First Example: Sorting

Suppose we wish to provide a sorting function as a component. Our idea
of a general-purpose component is that the programmer should be able
to use the component with a minimum of bureaucracy, whether there
are two data items to sort or a million; regardless of the types of the
components; and with any comparison function.

To get started, here is the simplest version of this component, a proce-
dure to sort an array of integers, using a simple but inefficient algorithm:

// Component:
val sortcomp =

<<class sortClass {
void sort (int[] A) {

for (int i=1; i<A.length; i++) {
int temp = A[i];
int j = i-1;
while ((j >= 0) && (temp < A[j]))

{ A[j+1] = A[j]; j--; }
A[j+1] = temp;

}
}

}>>

The client will use this component by loading it and then calling it in the
usual way.2

2 The let construct introduces a temporary name for a value. Using as the name
simply means the expression is being evaluated for its side effects and the value will
not be used. Function application is denoted by juxtaposition.

Lightweight and Generative Components I 53

// Client:
let val _ = load sortcomp
in

<<class SortClient {
void useSortComponent() {

int[] keys; ... sortClass.sort(keys); ...
}

}>>
end;

The load function turns a value of type Codeclass into an actual, executa-
ble, class definition.

To avoid the necessity of matching the type of the client’s array with
the type expected by the component, we abstract the type from the com-
ponent:

// Component:
fun sortcomp typenm =

<<class sortClass {
void sort (‘typenm[] A) {

for (int i=1; i<A.length; i++) {
‘typenm temp = A[i];
... as above ...

}
}

}>>;

The client must supply the type as an argument when loading the com-
ponent, but otherwise does not change:

// Client:
let val _ = load (sortcomp <<int>>)
in ... as above ...

To abstract out the comparison function, we could pass it as a second
argument to the sort function. However, that is both inefficient and bu-
reaucratic, particularly since Java does not allow functions as arguments;
instead, we abstract the comparison function from the component as a
function of type Codeexp → Codeexp → Codecomparison:

// Component:
fun sortcomp typenm compareFun =

<<class sortClass {
void sort (‘typenm[] A) {

...
while ((j >= 0) && (‘(compareFun <<temp>> <<A[j]>>)))
...

} } >>;

54 S. Kamin, M. Callahan, and L. Clausen

Note that, since the arguments to compareFun are of type Code, in the
body of the sort procedure they must be quoted. The client passes in an
argument of the correct type:

// Client:
let val _ = load (sortcomp <<int>> (fn i j => <<‘i<‘j>> end))
in ... as above ...

The comparison function itself is a Jr function, so it is not quoted; howe-
ver, it returns Code, so its body is quoted.

”Lightweight” components are those that, like macros, do not entail
the creation of a new function or class, but simply add new code in-line. A
lightweight sorting component would put a statement in the place of the
call. In preparation for such an example, we now define the sort compo-
nent in such a way that it provides two Code values: the sort procedure
(optional) and a statement to be placed at the point of the call. More
specifically, the second value is a function from the array being sorted to
a statement. So we now think of the component as having type

Codetype → (Code → Code → Code)comparison

→ Code fundef × (Codeargument → Codecall)

This can accommodate either an in-line sort or a call to the provi-
ded sort routine, as above. Here is how we would provide exactly the
functionality of our previous version of the component:3

// Component:
fun sortcomp typenm comparefun =

[<<class sortClass { ... as above ... } >>,
fn arg => << sortClass.sort(‘arg); >> end];

Now the client must use the provided sort-calling code:

// Client:
fun sortclient [sortproc,sortcall] =

let val _ = load sortproc
in

<<class SortClient {
void useSortComponent() {

... int[] keys; ... ‘(sortcall <<keys>>) ...
} }>>

end;

sortclient (sortcomp <<int>> (fn e1 e2 => <<‘e1 < ‘e2>> end));

3 The [·,·] notation creates a pair of values. The function fn [x, y] => . . . expects
its argument to be such a pair, and binds x and y to its two elements.

Lightweight and Generative Components I 55

In this case, the effect is exactly as in the previous version: the call to
sortClass.sort is inserted directly into the client code (and the less-
than comparison is inserted directly into the sort procedure).

Using the type given in (1), it is possible to insert in-line code beyond
just a function call. We exploit this capability in the following component,
adding an additional integer argument indicating the length of the array.
If the length is 2 or 3, the sort is done in-line; if less than 100, the sort is
done by insertion sort; otherwise, the component uses quicksort.

A[j];

// Component:
fun sortcomp typenm comparefun size =

if (size < 4) // place in-line
then

let fun swap e1 e2 =
<<if (!‘(comparefun e1 e2)) {

‘typenm temp = ‘e1; ‘e1 = ‘e2; ‘e2 = temp;
}>>

in [<<>>, // no auxiliary class in this case
fn arrayToSort =>

if (size < 2) then <<>>
else if (size == 2)
then swap <<‘arrayToSort[0]>> <<‘arrayToSort[1]>>
else // size == 3

<<{ ‘(swap <<‘arrayToSort[0]>> <<‘arrayToSort[1]>>)
‘(swap <<‘arrayToSort[1]>> <<‘arrayToSort[2]>>)
‘(swap <<‘arrayToSort[0]>> <<‘arrayToSort[1]>>)

}>>
end]

end
else // don’t in-line

let val callfun =
fn arg => << sortClass.sort(‘arg); >> end

in [<<class sortClass {
void sort (‘typenm[] A) {

‘(if (size < 100) // use insertion sort
then <<... as above ...>>
else // size >= 100 - use quicksort

<<... definition of quicksort ...>>)
} }>>,

callfun]
end;

The client calls the component just as before, but with the additional
argument. Note that this argument is not a Code argument, but an actual
integer.

56 S. Kamin, M. Callahan, and L. Clausen

Using sortclient defined above, the result of the call

sortclient (sortcomp <<int>> (fn e1 e2 => <<‘e1<‘e2>> end) 2);

would be to load nothing (there being no auxiliary class in this case) and
to transform the client to

class SortClient {
void useSortComponent() {

... int[] keys; ...
if (!(keys[0] < keys[1])) {

int temp = keys[0];
keys[0] = keys[1];
keys[1] = temp;

} ... } }

4 Example: Caching

If a programming technique can be formalized, it can be made into a
component. One example is the technique of caching, which can have a
dramatic impact on the running time of an algorithm.

Given a function f, we cannot simply define a new function, cached_f,
to be the caching version of f. The reason is that f may have recursive
calls that must be changed to calls to cached_f. To allow for these calls to
be changed, the client must supply a function of type Coderecursive call →
Code function body. In somewhat simplified form, the creator of the cached
function does this:

F = fn f => <<...‘f(x)...>> end 7→
cached_f (x) {

if (x not in cache)
cache entry for x =

F <<cached_f>>(x)
return cache entry for x

The caching component is presented below. This version handles ca-
ching only for functions of a single integer, though versions for arbitrary
arguments of arbitrary types can be developed fairly easily.

fun cacheComponent thecode cachesize unusedval =
<<class cacheMaker {

static int [] ncache = new int[‘(cachesize)];

static int original (int x) { ‘(thecode <<cacher>>) }

public static int cacher (int x) {
if ((x < ‘(cachesize)) && (ncache[x] != ‘(unusedval)))

Lightweight and Generative Components I 57

return ncache[x];
else {

int newres = original (x);
if (x < ‘(cachesize)) ncache[x] = newres;
return newres;

}
}

static int setupcache (int x) {
int i=0;
while (i < ‘(cachesize)) ncache[i++] = ‘(unusedval); }
return cacher (x);

}
}>>;

A caching version of the Fibonacci function is shown below. The code
fragment (a) shows how the use of the caching component, and fragment
(b) is the resulting code.

(a) let fun fibonacci recursefn =
<<if (x < 2) return x;

else return (‘recursefn(x-1) + ‘recursefn(x-2)); >>
in cacheComponent fibonacci <<20>> <<-1>>
end;

(b) class cacheMaker {
static int [] ncache = new int[20];

static int original (int x) {
if (x < 2) return x;
else return (cacher(x-1) + cacher(x-2));

}

public static int cacher (int x) {
if ((x < 20) && (ncache[x] != -1)) return ncache[x];
else {

int newres = original (x);
if (x < 20) ncache[x] = newres;
return newres;

} }

static int setupcache (int x) {
int i=0;
while (i<20) { ncache[i] = -1; i++; }
return cacher (x);

} }

58 S. Kamin, M. Callahan, and L. Clausen

5 Example: Vector Operations

Figure 1 shows a component that provides vector-level operations: multi-
plication by a scalar, vector addition, (component-wise) vector multiplica-
tion, and vector assignment. It is very simple to provide a class containing
such operations, particularly in Java, where arrays are heap-allocated.
Part (a) of Fig. 1 shows such a component in outline.

The problem is that this component is quite inefficient. For one thing,
it allocates a new array for each intermediate result, though this problem
could be alleviated, at some cost in convenience, by providing each ope-
ration with an additional argument, the target array. The more difficult
problem is that it calculates each intermediate vector separately, using a
separate loop. It does no “loop fusion.”

The component shown in part (b) of Fig. 1 treats each vector as
a function from an index expression to a value expression. It does not
perform any actual computation until a computed vector is assigned to
another vector, at which point it constructs a single loop to move the
calculated values to the target array. A simple client program is shown
in part (c) (note that this can be a client of either version of the vector
component), and parts (d) and (e) in Fig. 2 show the result of applying
the client to the components in parts (a) and (b), respectively.

6 Related Work

Much of the research in programming languages can be said to concern
the problem of componentizing software. Therefore, a great deal of work
bears more or less directly on ours. What generally is accounted under
the title of “components” nowadays are the kind of large-scale compo-
nents exemplified by COM objects [8]. These are important advances in
standardizing interfaces, implementing version control, and permitting
component search, among other things. However, these components are
not adaptable in the sense of our sort component, and by their nature,
tend to be heavy-weight. Thus, though they allow for a new level of in-
tegration of software at a large granularity, they do not seem likely to
change the day-to-day dynamics of programming.

We mention three other recent research efforts that are most closely
related to this work: aspect-oriented programming, and Engler’s ‘C and
Magik systems.

Aspect-oriented programming (AOP) [7] represents an attempt to
change the programming process by separating algorithms from certain

Lightweight and Generative Components I 59

(a) val adt_vectorcomp =
[SOME <<class VectorOps {

static double[] scale (double s, double[] A) {
double[] B = new double[A.length];
for (int i=0; i<A.length; i++) B[i] = s * A[i];
return B;

} ... }>>,
fn "copy" => fn B i => B end
| "scale" => fn x A i => <<VectorOps.scale(‘x, ‘(A i))>> end
| "add" => fn A B i => <<VectorOps.add(‘(A i), ‘(B i))>> end
| "mult" => fn A B i => <<VectorOps.mult(‘(A i), ‘(B i))>> end
| "assign" => fn A B => <<‘A = ‘(B 0);>> end
end

];

(b) val fusing_vectorcomp =
[NONE,
fn "copy" => fn B i => <<‘B[‘i]>> end
| "scale" => fn x A i => <<(‘x * ‘(A i))>> end
| "add" => fn A B i => <<(‘(A i) + ‘(B i))>> end
| "mult" => fn A B i => <<(‘(A i) * ‘(B i))>> end
| "assign" => fn A B =>

let val i = gensym "i"
in <<for (int ‘i=0; ‘i<‘A.length; ‘i++)

‘A[‘i] = ‘(B i);>>
end end

end
];

(c) fun vectorClient [vectorauxops,vectorfuns] =
let val _ = loadif vectorauxops

val copy = vectorfuns "copy"
val scale = vectorfuns "scale"
val add = vectorfuns "add"
val mult = vectorfuns "mult"
val assign = vectorfuns "assign"

in <<class VectorClient {
void useVectorOps (double[] A, double[] B, double[] C) {

double[] result;
‘(assign <<result>>

(scale <<2.0>> (mult (add (copy <<A>>) (copy <>))
(copy <<C>>))))

return result;
}

}>>
end;

Fig. 1. Vector calculations: (a) Traditional; (b) Loop-fusing; (c) A client

60 S. Kamin, M. Callahan, and L. Clausen

(d) void useVectorOps (double[] A, double[] B, double[] C) {
double[] result = VectorOps.scale(2.0,

VectorOps.mult(VectorOps.add(A, B), C));
return result;

}

(e) void useVectorOps (double[] A, double[] B, double[] C) {
double[] result;
for (int i1=0; i1<result.length; i1++)

result[i1] = (2.0 * ((A[i1] + B[i1]) * C[i1]));
return result;

}

Fig. 2. Vector calculations (cont.): (d) The client using component (a); (e) The client
using component (b)

details of their implementation — like data layout, exception behavior,
synchronization — that notoriously complicate programs. These ancillary
aspects of programs can be regarded as components in a broad sense, and
indeed they are formally specified in their own aspect languages. Our
approach is not as convenient notationally because the use of the other
components cannot be implicit: the programmer has to know about, and
plan for, the use of our components. On the positive side, our approach
is fundamentally simpler in that it requires little new technology, and it
is more general in that the mechanisms we use can handle any aspect.

The work of Engler, in two papers [2,1], is particularly close to ours.
The earlier of these [2] describes a C extension, called ‘C with a Code type
and run-time macros. ‘C differs from our work both in overall goals — ‘C
is intended mainly to achieve improved efficiency rather than to promote a
component-based style of programming — and in technical details. There
is no functional meta-language level in ‘C — meta-computations are ex-
pressed in C itself. This implies that there are no higher-order functions
or other convenient data types for manipulating code values, which we
have found to be indispensable.

The more recent paper [1] describes Magik, an extension to the lcc [3]
C compiler that gives users access to the internal abstract syntax tree
form of programs. Both AOP and Magik, by virtue of their dependence
on abstract syntax tree manipulations, are inherently compile-time ap-
proaches. Our use of a Code type with compositional semantics, together
with ordinary abstractions found in any functional language, removes the
dependence on access to the abstract syntax tree. This allows the same
ideas to be implemented at the level of executable binaries (as shown in
[6]), at the expense of some flexibility.

Lightweight and Generative Components I 61

7 Conclusions

We have presented an approach to software components that is simple
and general, and is based on well-known ideas in programming languages.
Our suggestion is that higher-order macros written in a functional meta-
language, to generate code in an imperative object language, can account
for lightweight (i.e. in-lined) and generative components. More broadly,
the idea is that the definition of a Code type — representing the “values”
of phrases in the object language — with a quotation mechanism to allow
simple construction of those values, is all the mechanism that is needed for
a powerful component facility — the meta-language provides the rest. The
definition of the Code type can vary, so long as values can be computed
compositionally. In this paper, we define Code to be String, meaning that
the “value” of a phrase is its textual representation. This leads to “source-
level components.”

Components and clients are written in a meta-language chosen for its
power and conciseness, to produce code in an object language chosen by
some other criterion (efficiency, portability, compatibility, etc.). The use
of a functional meta-language is of critical importance, as this leads to a
much more general macro facility while keeping the notational overhead
reasonable. The overall approach — using higher-order, cross-language
macros to create a simple, powerful, and easy-to-implement component
system — has not, to our knowledge, been previously suggested.

One area for future research is to study ways to simplify the writing
of components and clients. We hasten to point out that, in this view
of components, higher-order functions over Code — like the component
that returns a function the can be used by the client to invoke methods
defined by the component — are essential. So a certain irreducible level of
complexity is inherent in the approach. Still, some aspects of component-
and client-writing could be simplified by the judicious use of types. For
example, much of the quoting and anti-quoting could be made implicit if
the types of various operations were known: if f is known to have type
Code → Code, then if the antiquoted fragment ‘(f <<x>>) appears in
a program, both the anti-quote symbol and the quotations on x can be
eliminated.

Source-level components are a good way to illustrate the use of a
higher-order meta-language with a Code type. However, in practice, bi-
nary-level components are more practical. They can be distributed in
those (frequent) cases when the source code is proprietary, they are ge-
nerally more efficient to use, and they allow a more dynamic use of new

62 S. Kamin, M. Callahan, and L. Clausen

components. We have emphasized in the paper that the key requirement
is a definition of the Code type that allows code values to be calcula-
ted compositionally. There is no inherent reason why machine language
could not be included in such a value. In [6], we define Code as (roughly
speaking)

Code = Environment → MachineLang × Environment

Here, Environment gives the locations of variables. This definition allows
for partially-compiled components and permits the components to be dis-
tributed as executables. The examples in that paper are identical in spirit,
and very similar in detail, to those given here.

References

[1] Dawson Engler. Incorporating applications semantics and control into compilation.
In Proceedings of the Conference on Domain-Specific Languages, Santa Barbara,
California, USA, 15–17October 1997.

[2] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynaic code generation. In Con-
ference Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 131–144, St. Petersburg Beach, Flo-
rida, 21–24 January 1996.

[3] Chris W. Fraser and David R. Hanson. A retargetable compiler for ANSI C.
SIGPLAN Notices, 26(10):29–43, October 1991.

[4] James Gosling, Bill Joy, and Guy L. Steele Jr. The Java Language Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, 1996.

[5] Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard ML:
Version 3. Technical Report ECS-LFCS-89-81, Laboratory for the Foundations of
Computer Science, University of Edinburgh, May 1989.

[6] Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and generative
components ii: Binary-level components. September 1999.

[7] Kim Mens, Cristina Lopes, Bedir Tekinerdogan, and Gregor. Kiczales. Aspect-
oriented programming. Lecture Notes in Computer Science, 1357:483–??, 1998.

[8] Dale Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft
Press, 1997.

[9] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotati-
ons. In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM-97), volume 32, 12 of ACM SIG-
PLAN Notices, pages 203–217, New York, June 12–13 1997. ACM Press.

	Introduction
	code and Components
	A First Example: Sorting
	Example: Caching
	Example: Vector Operations
	Related Work
	Conclusions
	References

