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Abstract

Run-time code generation is a well-known technique for
improving the efficiency of programs by exploiting dynamic
information. Unfortunately, the difficulty of constructing
run-time code-generators has hampered their widespread
use. We describe Jumbo, a tool for easily creating run-time
code generators for Java. Jumbo is a compiler for a two-
level version of Java, where programs can contain quoted
code fragments. The Jumbo API allows the code fragments
to be combined at run-time and then executed. We illustrate
Jumbo with several examples that show significant speed-
ups over similar code written in plain Java, and argue fur-
ther that Jumbo is a generalized software component sys-
tem.
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1 Introduction

Jumbo is a dynamic compiler for Java capable of pulling
together fragments of Java code— down to the level of sin-
gle expressions or statements — into a single program and
compiling the combined program at run-time. Jumbo does
not simply build the program as text and invoke the Java
compiler from the running program. Instead, the compiler
is structured in such a way that fragments can be separately
compiled to an intermediate form from which the full pro-
gram can be assembled without reinvoking the compiler. In
other words, Jumbo builds run-time code generators.

This structure allows for significant flexibility in the pro-
gram generators Jumbo can build. Furthermore, since the
program generators are binaries (that is, Java class files)
and produce binaries, with no separate invocation of the
compiler, Jumbo passes the “deployability” test for com-
ponents. From this point of view, Jumbo can be seen as a
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component-constructing tool of great generality — greater
than traditional component systems that operate at the level
of whole methods or classes. Jumbo components can be
thought of as “run-time macros.”

In this paper, we introduce Jumbo and give several ex-
amples of its use. To a great extent, using Jumbo “feels”
like creating strings that look like programs and then com-
piling them. Conceptually, the model is very simple. In
some examples, complex interactions between component
and client make for an inherent complexity that Jumbo can-
not eliminate; however, the programmer’s focus is always
on the question “What should the generated program look
like?”, and this makes Jumbo straightforward to use.

The next section gives an overview of the Jumbo system.
In Section 3, we present two examples of the use of Jumbo.
References to related work and conclusions are presented in
the final sections.

2 The Jumbo System

Jumbo is a “compiler API,” consisting of about a dozen
classes, the most important of which is Code. Code con-
tains a number of static methods similar to these examples:

static Code binop (int, Code, Code)
static Code ifThenElse (Code, Code, Code)
static Code returnVal (Code)

These methods correspond to abstract syntax operations,
acting upon and producing values of type Code. When us-
ing Jumbo, it is not misleading to think of Code as contain-
ing abstract syntax trees, or even strings; however, Code is
neither of these things, but is instead a partially compiled
value. Programmers will rarely use these AST operations
directly, as a special quotation syntax is provided to pro-
duce calls to these operations. We will show examples of
the quotation syntax later in this section.

In addition, the Code class provides the following two
instance methods:
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void generate ();
Object create (String classname);

The generate() method converts a Code value into
JVM code and writes the corresponding class files; the
Code value must correspond to a class or list of classes.
create() calls generate() and then loads the named
class and returns a new object of that class. (In the cur-
rent version of Jumbo, due to our reliance on the Class
method newInstance(), no arguments can be passed to
the constructor.)

The basic idea behind Jumbo is compositional compila-
tion [6]. The crucial point is that the abstract syntax opera-
tions of the Jumbo API are the compiler. Unlike an ordinary
compiler in which the syntax tree is a passive data structure
upon which the compiler operates, the Jumbo operators are
genuine functions that perform compilation. This is called
a compositional compiler because the compilation of each
language construct is a function only of the compilation of
its sub-constructs— a very different structure from conven-
tional compilers. The advantage is that any particular piece
of syntax can be easily abstracted from and filled in at a later
time.

The idea of compositional compilation is widely appli-
cable to different languages and target architectures. In [6],
we used a variant of Java and targeted SPARC machine lan-
guage. Some languages and target architectures are much
more difficult to compile compositionally than others, and
tradeoffs in code quality must be made. The structure of
Java and its implementation by an abstract machine are par-
ticularly well suited to our approach, and Jumbo produces
virtually the same code as the javac compiler. Only in-
ner classes, being especially difficult to handle, are not yet
implemented in Jumbo.

2.1 Using code generators

In discussing Jumbo programs, we often refer to the sup-
plier of the code generator as the server, and the user of
the supplied code generator as the client. Following this
metaphor, we also sometimes refer to Jumbo programs as
components.

The following code is a typical Jumbo client which
uses a vector dot-product generator supplied by a server.
Dot is an interface containing the method double
dot(double[]).

double[] vec1 = getInputVector();
Code dotprodcode = codegenDot(vec1);
Dot dotprod =

(Dot)dotprodcode.create("DotProd");
while (true) {

double[] vec2 = getInputVector();
double p = dotprod.dot(vec2);

outputResult(p);
}

The server supplies codegenDot, a Jumbo method
whose function is to produce a class that implements
the Dot interface. We will show the definition of
codegenDot shortly. As with any other library code,
the client knows only the type, Code codegenDot
(double[]), and purpose of the method. create can
be applied to the value returned by codegenDot to com-
pile the class (named DotProd) and return an instance of
that class. Since that class does not exist at the time the
client code is compiled, we must use the Dot interface.

In summary, the client uses the method codegenDot
to produce a method that is specialized to multiply other
vectors by the fixed vector vec1. Fixing one of the vectors
in a dot product calculation offers the potential to speed up
the calculation by using dynamic information. That infor-
mation includes the length of the vector, which allows the
dot product loop to be unrolled, and its values, which may
be exploited to gain efficiency — for example, by omitting
multiplications by zero or one.

The pure Java alternative to the above would use a non-
generating dot product routine, say dotprod:

double[] vec1 = getInputVector();
while (true) {
double[] vec2 = getInputVector();
double p = dotprod(vec1, vec2);
outputResult(p);

}

where dotprod is the straightforward library method
(omitted for brevity).

The advantage of the dynamically compiled version is
that, in some cases, it may be much faster; the disadvan-
tage is that, in other cases, it may be much slower due the
cost of run-time compilation. Like any other programming
tool, Jumbo must be used judiciously. When appropriately
applied, Jumbo gives speed-ups that are hard to obtain by
conventional means.

2.2 Speed-ups

A use of Jumbo involves three time-consuming stages:

1. Loading the Jumbo API.

2. Generating and loading the class file.

3. Executing the generated code.

In the DotProduct example, step 2 is performed when
variable dotprodcode is assigned and then sent the
create message. If the class file were created during one
session (by sending the generatemessage) and then used

2

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03) 
0-7695-1913-X/03 $17.00 © 2003 IEEE 



in a separate session, we would break step 2 into two parts,
but for this example that is not necessary.

Each of these timings is potentially of interest to the
Jumbo user. A single use of Jumbo, as in the current exam-
ple, entails all three steps. Once the Jumbo API is loaded
(or, speaking more speculatively, if it were built into the
virtual machine) step 2 represents the incremental cost of
generating new code dynamically. Step 3 gives the “bottom
line”, the speed of the generated code — which should be,
and is, substantially faster than plain Java code. Whether
or not using Jumbo saves time overall depends on how it is
used.

Note that there are two variables in the dot product com-
putation that affect the overall computational cost: the size
of the vectors and the number of dot product computations
that are performed. The cost of step 1 is independent of
these numbers, and the cost of step 2 depends only on the
vector vec1. For the timings presented here, we used
randomly-generated 100-element vectors of two kinds: no
bias, and bias towards generating zeroes (sparse vectors).
The results are given in Table 1. The dot product computa-
tion was repeated a varying number of times (n), from 10
to 1,000,000. For the Jumbo version, the code generation
process (step 2) occurred just once in each run.

All timings were produced on an unloaded 1.47GHz
Athlon PC with 1GB of memory, running Linux kernel
2.4.18. We used Sun’s Java SDK, version 1.3.1 (Standard
Edition, Blackdown build). Times are in milliseconds, ob-
tained with a microsecond timer routine.

The results are easily summarized:

• Step 1, the loading of the Jumbo API, took about 0.2
seconds. For small numbers of iterations, this time
dominates. Step 1 takes about 15 times longer than
step 2 (in the unbiased case).

• Step 2, code generation, took about 14milliseconds for
the unbiased vector and 6 milliseconds for the biased
vector. This is, in turn, about 300–700 times slower
than a single dot product calculation. (See Table 1 for
more accurate numbers.) Note that the cost per dot
product declines significantly as the number of itera-
tions rises because of the effect of run-time optimiza-
tions in the Java run-time implementation. Thus, for
10 iterations, the cost is about 19 µsec per iteration;
for 1,000,000 iterations, the cost goes down to about
.3 µsec per iteration. Since the cost of code genera-
tion remains constant, the ratio of code generation to
execution time rises sharply.

• Step 3, execution time of the generated code for the
unbiased case took from 19 µsec per dot product com-
putation down to about .3 µsec, as discussed above.
For the biased case, these numbers were cut approxi-
mately in half, as would be expected.

Random data Jumbo Java
Load API 226.0 N/A
Code gen. 14.3 N/A
Run-time (n)
10 0.19 0.16
100 0.7 1.5
1000 5.6 19.6
10000 15.5 48.9
100000 43.2 127.4
1000000 290.7 929.1

50% 0’s Jumbo Java
Load API 228.0 N/A
Code gen. 5.57 N/A
Run-time (n)
10 0.1 0.16
100 0.4 1.5
1000 3.0 15.1
10000 8.3 39.8
100000 24.3 120.2
1000000 151.0 925.8

Table 1. Effect of dynamically compiling dot
product routine. (Times in milliseconds.)

• By comparison, the Java version does not pay the costs
of steps 1 and 2, but the dot product computation took
from 16 µsec to .9 µsec in both the unbiased and un-
biased cases, per iteration. (The biased case is slightly
faster because floating-point multiplication by zero is
faster on this platform than multiplication by non-zero
values.) Over time, the generated code in the unbi-
ased case ran about three times faster per iteration than
the Java code, and in the biased case, about five times
faster.

The “cross-over point” depends upon which parts of the
computation are included. For a complete run, including
all three stages of Jumbo computation, the cross-over is at
about 400,000 iterations in the unbiased case, 300,000 in the
biased case. If the API is assumed to be preloaded—which
is to say, for all uses of Jumbo except the first — then the
cross-over points are at about 1000 and 500 iterations for
the two cases.

The results of this run show the potential for signifi-
cant speed-ups when the cost of loading and dynamic code
generation is amortized over a sufficient number of uses.
For the unbiased vectors, where the only benefits of Jumbo
come from loop unrolling, the Jumbo version is eventually
over three times as fast as Java; for the biased vector, the
improvement factor is about five.
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We are currently investigating methods of decreasing
run-time compilation time, and we expect great improve-
ments by applying partial evaluation techniques. Further-
more, Jumbo can be used statically as well as dynamically,
and in some cases (as in the example in Section 3.1) this is
quite appropriate. In that case, the run-time seen by the user
would be that shown in the last column.

2.3 Writing code generators

Someone has to write the code generators, and Jumbo
is easy to use in this respect. Component writers must use
the Jumbo compiler (unlike in the previous section, where
the client only needed the Jumbo API and could have used
any Java compiler). The Jumbo compiler processes a “two-
level” version of Java to produce code generators, using a
quote/anti-quote syntax similar to that of MetaML [10].

A fragment of Java code within brackets $< and >$ rep-
resents a value of type Code:

Code C = $< class CodeExample
implements InterfaceType {

... } >$;
InterfaceType obj =

(InterfaceType)C.create("CodeExample");
/* ... use obj ... */

The quotation syntax works much like ordinary string quo-
tation, except that the result is a value of type Code
rather than String. Java type-checking requires that
we use an interface InterfaceType, since the class
CodeExample does not exist at the time this code frag-
ment is compiled. (The argument to create is redundant
in this case, but required because the Code value may, in
general, contain more than once class definition.)

The Jumbo compiler is used to compile the code within
quotes. The only restriction on such quoted code is that in-
ner classes, not yet implemented in Jumbo, cannot be used.
In our examples, we sometimes use inner classes, but never
inside quotes.

Within a quoted Java fragment, values of type Code can
be “spliced,” using the anti-quotation syntax

‘syntax-category(Java code fragment)

The entire anti-quoted section is replaced, for parsing pur-
poses, by a generic fragment of syntactic type syntax-
category; the only reason we require the syntax category to
be present is to allow for parsing of the surrounding code.

For example, we can write

Code addxy = $< x+y >$;
Code assignz = $< z = x*5; >$;
Code example =

$< class CodeExample

Category Expression value expected (Type)
Expr Expressions (Code)
Stmt Statements (Code)
Name Identifiers (String) (Default category)
Type Types (Type)
Case List of case branches (MonoList of Code values)
Method Method declaration (Code)
Field Field declaration (Code)
Body List of class members (MonoList of Code values)
Char Character constant (char)
Int Integer constant (int)
Float Float constant (float)
Long Long constant (long)
Double Double constant (double)
Bool Boolean constant (boolean)
String String constant (String)

Table 2. Syntactic categories for anti-
quotation

implements InterfaceType {
... ‘Expr(addxy) ... ‘Stmt(assignz) ...

} >$;
InterfaceType obj =
(InterfaceType)C.create("CodeExample");

/* ... use obj ... */

The anti-quoted expressions ‘Expr(addxy) and
‘Stmt(assignz) are “holes” filled by the code in
addxy and assignz. As mentioned earlier, the casual
user can think of this as splicing strings into the string
example; however, these values are not strings but rather
of type Code.1

The anti-quoted parts can be any Java expression of type
Code. If the method f has signature Code f(int), we
can write

$< ... ‘Expr( f(3) ) ... >$

At run-time, f(3) would be evaluated and the resulting
Code value spliced into the surrounding Code value.

Table 2 shows the syntactic categories available for anti-
quotations. For each case, the table shows the type of the
expression that must be given as an argument to the syntax
category. The examples above use syntax categories that
take arguments of type Code, Expr and Stmt. As the
table shows, there are some syntax categories that require
different types of arguments:

1We insist on this perhaps seemingly pedantic distinction. In our view,
it is a virtue of Jumbo that the programmer can think of these fragments
as strings, because that is a simple model to understand; it is also a virtue
of Jumbo that they are not strings, because this allows for a more efficient,
non-source based implementation.
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• Name is a category used when the only syntactically
valid item is an identifier. Name would be used, for
example, to abstract the name of a class. This is the de-
fault category; when we write ‘ident with no syntax
category and no parentheses, ident must be a vari-
able of type String.

• Type is used wherever a type is required. In or-
der for $< ‘Type(t) x, y; >$ to be a valid
declaration, t must be a Java expression of type
Type. A value of type Type can be created by us-
ing Type.parseType(String jtype), where
jtype is a Java-style type. Type also defines con-
stant type values int type, float type etc. for
the primitive types.

• The Case and Body categories require MonoLists
of Code values. MonoList is a collection class
interface included in the Jumbo API and differs
from Java’s List class primarily in that the add
operation has type MonoList add(Object) in-
stead of boolean add(Object); the functional
style add operator turns out to be more conve-
nient for our purposes. A quote of switch cases
($<case 0: ... case 1: ...>$) returns a
MonoList of Code values; all other quoted frag-
ments return Code.

• The last categories (Char, . . ., String) must have
arguments of the corresponding types. (That is, ex-
pressions of those exact types, not Code.) These allow
Java values to be “reified,” i.e. turned into syntax that
can be included in generated programs.

There is only one Code type, but it covers a variety
of syntactic types. Intuitively, $<x+y>$ should denote “a
Code value of type Expr”, and $<x=y;>$ should denote
“a Code value of type Stmt.” When we write, for instance,
$<...‘Expr(e)...>$, we should insist that e evalu-
ates to a Code value of type Expr. However, we make no
such distinctions and have only a single type, Code. In dis-
course, we often refer to a Code value “corresponding to”
an expression or statement, etc. We do no type-checking
of generated code when we compile the program generator
(as is done in MetaML); such type-checking is done when
generate is called. generate and create may only
be applied to a Code value corresponding to a class defini-
tion or list of same.

We have now completed our presentation of Jumbo and
are able to present the definition of codegenDot. We gain
speed-ups by unrolling the loop and using the fixed values
of the static vector as constants, removing the iteration and
array lookup overhead. Additionally, we take advantage of
the frequent presence of 0’s and 1’s in vectors by applying
simple arithmetic equivalences of multiplication.

The code used for Table 1 follows:

public static Dot codegenDot(double[] V1) {
Code c =

$<public class DotProd
implements Dot {
public double dot(double[] V2) {

return ‘Expr(makeSumCode(V1, $<V2>$));
}

}>$;
return (Dot)c.create("DotProd");

}

public static Code makeSumCode(double[] V1,
String V2) {

Code sumcode = $<0.0>$;
for (int i = 0; i < V1.length; i++) {

if (V1[i] == 1.0)
sumcode = $<‘Expr(sumcode)+‘V2[‘Int(i)]>$;

else if (V1[i] != 0.0)
sumcode = $<‘Expr(sumcode)

+‘Double(V1[i])*‘V2[‘Int(i)]>$;
}
return sumcode;

}

If v1 were the array {5.2, 0.0, 2.4, 1.0}, the
generated class would contain a method equivalent to

return 0.0 + 5.2*vec2[0]
+ 2.4*vec2[2] + vec2[3];

Other static characteristics of the vector v1, such as repeti-
tions or symmetries, could be exploited as well.

We have explained essentially all of the features of
Jumbo: a “compilation API” with a parser that adds a
quotation/anti-quotation feature. These conceptually sim-
ple facilities are remarkably powerful, as illustrated in the
remainder of this paper. Further examples can be found in
[5, 6], which describe a predecessor of Jumbo.

3 Examples

In this section, we give two examples that show the per-
formance benefit obtained using RTCG. The first example
is a first-order method, which doesn’t require the client to
use the Jumbo compiler, only the Jumbo API. The sec-
ond example involves higher-order methods, where both
clients and component writers create code fragments using
the Jumbo compiler.

3.1 Generic data types

In Java, most collection classes are generic in a trivial
way: they contain only Objects. One disadvantage is that
primitive values must be boxed in wrapper classes like like
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Integer and Character before being used in a collec-
tion. Boxing has a significant run-time cost due to extra
object creation. Yet these generic collection classes can be
easily transformed into non-generic classes: just replace the
type Object by the desired type of element, and recompile
— in essence, the effect of using templates in C++.

We can get the same benefit in Jumbo by supplying the
type name as a parameter to a program generator. For exam-
ple, the Vector class in the Java library is a heavily used
collection class, with operations like add and iterator.
We created a non-generic collection class generator us-
ing Jumbo, which generates classes similar to the standard
Vector class. The generator provides three operations:

static Type vector (String type);
static Type iterator (String type);
static Code newVector (String type);

The vector and iterator methods are used to create
the names of the vector type corresponding to a particular
non-generic instance, and the type of its iterator. The ar-
gument is the name of the component type. newVector
creates an expression whose value is an object of the desired
collection type. The non-generic class is created implicitly
whenever one of these operations is called, but is only cre-
ated once.

The implementation consists largely of a Java class
placed within quotations and abstracted on the names of the
element type and the collection type:

Code C =
$<public class ‘vectorname {

‘Type(elttype)[] elements;
int numelements;

public ‘vectorname() {
elements = new ‘Type(elttype)[10];

}

public void add(‘Type(elttype) o) {
...

}

...
>$;

The only additional code, which is not shown, is the code to
insure that the desired collection class is generated exactly
once.

The timings shown in Table 3 were obtained by creating
vectors of various lengths (vlen) and then summing them:

‘Type(vector("int")) v =
‘Expr(newVector("int"));

for (int i = 0; i < vlen; i++) {
v.add(i);

vlen vector(”int”) vector(”Object”)
100 1 1
1000 2 2
10000 7 22
100000 23 132
1000000 186 976

Table 3. Effect of dynamically compiled non-
generic collection class. (Times in millisec-
onds.)

}
int sum1 = 0;
‘Type(iterator("int")) i;
for (i = v.iterator();

i.hasNext(); ) {
sum1 += i.next();

}

For the Java column, we mimicked Java by creating a
generic class vector("Object") and using it as one
would an ordinary generic collection in Java.

Table 3 shows only the execution times, since we assume
the various vector classes are created and compiled first, us-
ing generate. Afterwards, they are ordinary class files,
and can be used without further compilation. It will come
as no surprise to Java programmers that a vector of ints is
much more efficient than a vector of Integers.

3.2 Loop unrolling

The full power of Jumbo can be employed only when
the client has the Jumbo compiler and can write his own
code-producingmethods. This provides for communication
between the component and client. Loop unrolling is one
such situation: a loop unrolling component allows the client
to supply the body of a loop along with the bounds of the
loop, and the component unrolls the loop as needed.

Intuitively, loop unrolling is second order; the client sup-
plies the body of the loop and the unrolling method repeats
it as necessary. However, supplying the body as a Code
value does not allow the body to access the loop variable.
The solution is for the body of the loop, supplied by the
client, to itself be a Code-producing function (more pre-
cisely, a function object). A component whose argument is
a function is called a higher order component. Here, the
client passes an instance of the LoopIteration inter-
face, in which the iteration method takes a code frag-
ment for the iteration value and returns a code fragment for
the body, incorporating the iteration value:

interface LoopIteration {
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Code iteration (Code i);
}

A loop unroller takes as arguments not only the num-
ber of iterations and the loop body, but also the initial value
of the iteration variable, a loop increment, and the iteration
variable itself. Of these, only the iteration count and the in-
crement are constants; the initial value and the loop variable
are expressions, and the loop body is a LoopIteration
value.

The simplest unroller is a complete unroller:

public static Code unroll_all (
Code i, // iteration variable
Code init, // initial value
int incr, // increment (fixed value)
int iterations, //iterations (fixed)
LoopIteration F // loop body

) {
Code C = $< ; >$ ;
for (int x=0; x<iterations; x++)
C = $< ‘Stmt(C)

‘Stmt(F.iteration(
$<‘Expr(init)+‘Int(x*incr)>$))

>$;
C = $< ‘Stmt(C)

‘Expr(i) = ‘Expr(init)
+‘Int(iterations*incr);

>$ ;
return C;

}

The call

unroll_all(
$<i>$, $<0>$, 1, 3,
new LoopIteration () {

public Code iteration (Code x) {
return $<System.out.print(‘Expr(x));>$;

}
});

produces code equivalent to

System.out.print(0);
System.out.print(1);
System.out.print(2);
i=3;

Part of the unroller’s contract is to increment the index vari-
able by the appropriate amount.

This unrolling component can be applied to our initial
example, dotgen. However, full unrolling of the loop
in dot can be highly disadvantageous. With an array of
size 1000, the fully unrolled version runs approximately
eight times slower than the original version. The reason
for this difference in speed comes from one of two causes,

or a combination thereof. The HotSpot run-time system
for Java performs optimizations at run time selectively,
with longer methods optimized much less aggressively then
shorter ones. Secondly, longer methods can result in costly
misses in the instruction cache. In any case, it has been
frequently observed that long methods, though they execute
fewer instructions, can be slower than short ones.

This suggests a compromise: partially unrolling the
loops. In fact, this is the approach often used by traditional
optimizing compilers. The following unroller has an addi-
tional argument, the “block size,” i.e. the number of itera-
tions that should be unfolded in each loop iteration.

public static Code unroll_part (
Code i, Code init, int incr,
int iterations, LoopIteration F,
int BlockSize // max loop size

) {
int loops = iterations/BlockSize,

leftover = iterations%BlockSize;
if (loops < 2) // 0 or 1 loops - unroll

return unroll_all(i, init, incr,
iterations, F);

else
return

$< for (‘Expr(i)=‘Expr(init);
‘Expr(i) < ‘Expr(init)

+ ‘Int(loops*BlockSize*incr); )
{

‘Stmt(unroll_all(i, i, incr,
BlockSize, F))

}
‘Stmt(unroll_all(i, i, incr,

leftover, F))
>$;

}

When run on a vector of 1000 elements, the most efficient
dot product computation (counting only run time, not code
generation time, and repeating the dot product computa-
tion 100,000 times) was achieved using a blocking factor of
24. The execution speed was about 14% faster than no un-
rolling, and about ten times faster than complete unrolling.

4 Related work

Several researchers have noted that program generators
might be useful in ways that conventional components are
not. An example is Batory’s notion of components as layers
[1]. In this view — greatly simplified — a component is a
collection of classes whose superclasses are undetermined.
From our point of view, then, a “layer” is a function from
a list of superclass names to a list of classes. This is easy
to implement in Jumbo (we simplify here by assuming the
component contains just one class):
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Code myComponent (String superclass) {
return $< class myClass

extends ‘superclass {
...

} >$;
}

Instantiating a layer means applying it to a particular class
name:

myComponent("MySuperClass").generate();

Another example is [7], in which simple additions to class
files are made automatically at load time (mainly to solve
version integration problems); again, this facility could be
provided by using Jumbo. Yet another is the work of Franz
and Kistler [3], in which a compact representation of ab-
stract syntax trees is used as the medium of communication
of programs, instead of conventional binaries; compilation
to machine code is performed at load time.

Undoubtedly, these systems require support that goes be-
yond what Jumbo can offer and therefore need to be built
into Java compilers and run-time systems in some ways.
However, to a first order of approximation, these are just
RTCG systems, and Jumbo provides a simple way to exper-
iment with such ideas.

On a technical level, Jumbo’s closest relatives are vari-
ous two-level language systems, such as MetaML [10] and
’C [2]. As compared with these, Jumbo is distinguished
by the simplicity of the programming model it provides.
To a great extent, Jumbo programmers can think of their
programs simply as strings. The systems cited above im-
pose various restrictions that limit the programmer’s abil-
ity to abstract on some parts of their programs (most no-
tably, on type names). In Jumbo, context-sensitive checks
are not done until the entire program is put together at code-
generation time.

MetaML [10] is a partial evaluation system with explicit
staging. Though superficially similar, MetaML and Jumbo
are quite different at the semantic level. MetaML is de-
signed to be transparent to the programmer, in the sense
that the only result of omitting the staging information will
be slower execution. This transparency has an obvious ad-
vantage: the programmer is really programming in only one
language — the two-level annotations are just “pragmas”
— so that writing correct programs is no more difficult than
in the base language. Its disadvantage is that, as mentioned
above, the available abstractions are limited to those already
available in the base language; programs cannot be param-
eterized on type names or exception names, for instance.
There is also a serious question of control of the special-
ization process which arises in all partial evaluation-based
systems: the difficulty in arranging to have exactly the right
code generated at run time. For example, in the sorting ex-
ample in [5], a certain code fragment is to be inlined only

if a particular variable has a value within a given range; the
MetaML programmer cannot make this decision explicit.

JSpec [8] is a partial evaluation system for Java pro-
grams; the programmer indicates where and when special-
ization should occur in a “specialization class” separate
from the Java program itself. The comments just made with
respect to MetaML apply here as well.

’C [2] and Cyclone [4] are systems that are similar to
ours in that they include a two-level notation to specify run-
time code generation. As mentioned above, these systems
impose restrictions to insure that type-checking can be per-
formed (mostly) by the compiler, that control flows into and
out of generated code are known to the compiler, and so
on. In Jumbo, such checks are performed when run-time
code generation is performed; of course, earlier checking is
preferable, but the Jumbo approach gives the programmer
great freedom to modularize her program, requiring only
that the end result be correct. (Manifest type errors— those
that are visible in the quoted code — can, in principle, be
caught early by the Jumbo compiler; this is one goal of our
current development.)

We should mention that run-time code generation can
also be performed by more primitive methods. Sestoft [9]
describes the use of various APIs for creating JVM class
files at run time, in which the user provides the byte codes
for each method. Reflection can also be used to perform a
certain amount of customization of programs [11]. The ad-
vantage of Jumbo — or any of the other systems mentioned
in this section — over such approaches is that little more
is required of the programmer than the knowledge of Java
which he already possesses.

Jumbo uses the same language as metalanguage and ob-
ject language, but this is mostly a convenience. In our ear-
lier work [6], the metalanguage and object language were
distinct — the former a functional language and the latter
an imperative language. The only additional feature made
possible by having the same meta- and object language is
the possibility of unbounded levels of quotation. For pars-
ing reasons, unbounded levels of quotation are not allowed
in Jumbo at the moment.

5 Conclusions

The Jumbo system correctly compiles most of Java. All
the examples shown in this paper compile and run as adver-
tised. More information about Jumbo — including, in the
near future, the system itself — can be obtained from our
web site, http://fuji.cs.uiuc.edu/Jumbo.

Besides working on specific applications, we have two
immediate goals with respect to the Jumbo system. The first
is to complete Jumbo by implementing inner classes. At
present, Jumbo compiles the rest of Java, but omits certain
static checks (though they are discovered by the verifier); in
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essence, Jumbo produces the same code as javac. It will
be especially useful to have a complete implementation of
Java, because it will then be possible to quote — and thus
abstract parts of — any Java code.

The other goal is to optimize the code generation pro-
cess. The structure of Jumbo should permit this to be done
very effectively: even if there is a hole in a piece of quoted
Java code, most of the work involved in compiling that
code can normally be done statically. In principle, the cost
of code generation could be dramatically reduced in most
cases. The resulting code-generating components could be
used more routinely, since the need to amortizem the com-
pilation cost would be that much less.

The general idea of compositional compilation has broad
applicability. In [6], we described an earlier implementation
targetting SPARC machine code instead of JVM code. Tar-
geting machine code might be useful for producing code for
small computers that cannot support a JVM. The concept
can also be applied to other languages, although for many
languages the implementation would be more complex than
Jumbo.

Security and correctness are major issues in this con-
text. The behaviors of components can be hard to describe,
since their “holes” can be filled by arbitrary Java fragments.
The same problem appears in functional languages in which
functions can have side effects, and in object-oriented lan-
guages in which a method can be overridden by another
with no enforceable constraints on the latter’s behavior. To
what extent can the Jumbo compiler verify safety of the gen-
erated code? For that matter, to what extent can it be verified
at code-generation time? These questions are the subjects of
current research.

In the meantime, the system offers a good deal of power
and is, we believe, very encouraging for the use of the two-
level approach to code-generating components.
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