
c© Copyright by A. MATTOX BECKMAN, JR., 2003

CONTROLLING PARITAL EVALUATORS USING FUNCTIONAL PARAMETERS

BY

A. MATTOX BECKMAN, JR.

B.A., University of Illinois at Urbana-Champaign, 1993

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

Abstract

Partial evaluation is a source to source program transformation that makes use of symbolic interpre-

tation to perform aggresive constant propagation. Most partial evaluators are written as monolithic

programs that operate on their terms directly by recursing over the structure of the expressions.

Several partial evaluators and code generators have been published that do not process their terms

directly; instead, the partial evaluator is inlined into the program to be specialized via a source to

source translation. This technique has resulted in some evaluators with interesting properties, such

as a very small size and the ability to self-apply in the online case.

A weakness of these partial evaluators is that they lack a mechanism to control the specialization

process, and as a result explode on inputs that more standard offline partial evaluators are able

to handle. We propose the addition of a control mechanism called a strategy, a function that

advises the partial evaluator about whether to perform a reduction. Like traditional methods such

as binding time analysis, strategies can prevent combinatorial explosion by instructing the partial

evaluator to residulaize at appropriate times. They also allow us to make tradeoffs, such as partial

evaluation speed versus the size of the result. Strategies are a way of abstracting control, and

allow us to study the effect of different reduction techniques, and even combine them. For example,

strategies can look at both source terms or binding time annotations, which gives them the potential

to allow a combination of online and offline techniques.

For larger languages, this technique generalizes to the composition of many small functions,

each of which handles a certain aspect or implements a specific heuristic of partial evaluation. A

new behavior can be implemented by means of a strategy, and added to the partial evaluator by

composing it with the rest of the strategies being used. Behaviors shown include off-line partial

evaluation, bounded static variation, reading of termination annotations, and type directed partial

evaluation.

iii

Table of Contents

Chapter 1 Introduction . 1

1.0.1 On-line and Off-line Partial Evaluation . 3
1.1 The Futamura Projections . 3

1.1.1 First Projection . 4
1.1.2 Second Projection . 5
1.1.3 Third Projection . 5

1.2 Combinatorial Explosion . 6
1.3 Binding Time Analysis . 7

Chapter 2 Fundamental Techniques . 10

2.1 Functional Representation . 10
2.1.1 Church Numerals . 10
2.1.2 Disjoint Types and Pairs . 11

2.2 Higher Order Abstract Syntax . 13
2.3 Partial Evaluation . 15

2.3.1 Normalization . 16
2.3.2 PEVs . 16
2.3.3 Eliminating Recursion . 18

2.4 Related Work . 21

Chapter 3 Strategies . 23

3.1 Strategy Based Partial Evaluator . 23
3.2 Simple Strategies . 25

3.2.1 Expand All . 25
3.2.2 Expand None . 27

3.3 Composing Strategies . 27
3.3.1 Expand N . 28
3.3.2 Expand Below N . 29

3.4 Propagation . 29
3.5 Experimental Results . 33
3.6 Second Futamura Projection . 37
3.7 Third Futamura Projection and Code Explosion . 41

3.7.1 Combinatorial Explosion . 41
3.7.2 Third Projection and Strategies . 43

iv

Chapter 4 Expanding the Strategies . 44

4.1 Content-Observing Strategies . 45
4.1.1 Adding a Third Combinator . 46

4.2 First Order Abstract Syntax . 50
4.3 Annotated Terms . 52

4.3.1 Expand Linear . 54
4.4 Booleans and Integers . 54

4.4.1 Expanding the Representation . 55
4.4.2 Adding Strategies . 61

4.5 Strategies and η-Reduction . 63
4.6 Adding Contexts . 65

Chapter 5 Concrete Syntax . 68

5.1 Reduction . 69
5.2 Composition . 70
5.3 Normalization . 71
5.4 Partial Evaluation . 72

5.4.1 Binding Time Information . 72
5.4.2 Heuristics . 73
5.4.3 Bounded Static Variation . 73

5.5 Global Transformations . 74
5.5.1 Function Inlining . 74
5.5.2 Specialization . 74

5.6 Usage . 75
5.7 Conclusions and Related Work . 75

Chapter 6 The λ-Calculus Reducer . 76

6.1 Standard λ Interpretation . 76
6.1.1 Instantiation . 78
6.1.2 Indirection Nodes . 79
6.1.3 Improving the Instantiation Algorithm . 80

6.2 From Interpretation to Reduction . 82
6.2.1 Normalization . 83
6.2.2 α-Capture . 84

6.3 Ideal Abstractions . 86
6.4 Future Work . 90

Chapter 7 Conclusions and Future Work . 91

7.1 Conclusions . 91
7.2 Future Work . 92

7.2.1 Strategies . 92
7.2.2 Reducer . 93

References . 94

Vita . 97

v

List of Figures

1.1 An implementation of printf . 1
1.2 Function printf after partial evaluation . 2

2.1 Mogensen’s Partial Evaluator . 21

3.1 Strategy-based partial evaluator . 25
3.2 Propagation of Expand-n through a large tree . 31
3.3 Propagation of Expand-n through a changing tree . 32
3.4 Propagation of Expand-Breadth-n through a large tree 33
3.5 Propagation of Expand-Breadth-n through a changing tree 33
3.6 Ackermann’s function timings . 34
3.7 M applied to Ackermann’s function . 34
3.8 P and Expand All applied to Ackermann’s function 35
3.9 P and Expand None applied to Ackermann’s function 35
3.10 Ack2 and Ack3 for various values of Expand N . 36
3.11 Recursive versions of arithmetical functions . 37
3.12 Ack2 and Ack3 for various values of Expand Breadth-N 38
3.13 Modified Futamura Projections . 38
3.14 Second projections of P with Ackermann and exponential 38
3.15 Second projections with Expand N . 39
3.16 Performance of exponential function generator with Expand N 40
3.17 Second projections with Expand Breadth-N . 40
3.18 Performance of exponential function generator with Expand Breadth-N 40
3.19 Third Futamura Projections with M and P . 42
3.20 Third projection . 43

4.1 HOAS representation allowing variables . 46
4.2 Strategy-based partial evaluator, with represented variables 47
4.3 Expand Small and Expand N Then . 50
4.4 Hybrid FOAS strategy-based partial evaluator . 51
4.5 Strategy-based partial evaluator, with annotations 53
4.6 Constant handling in M c . 56
4.7 If handling in M . 56
4.8 Binary and unary operator combinators in Mc . 58
4.9 is and get for constants . 59
4.10 Versions of the exponential function . 59
4.11 Exponential function running times . 59
4.12 (M exp) . 60

vi

4.13 (M c exp) . 60
4.14 (M c expc) . 60
4.15 Sample of changes needed for P c . 61
4.16 (P exp) with Σall . 62
4.17 (P c exp) with Σall . 62
4.18 (P c expc) with Σall . 62
4.19 Expand Second . 64
4.20 Source of PC , part 1 . 66
4.21 Source of PC , part 2 . 67

5.1 Grammar for the target language . 69

6.1 Simple β-reduction, using trees . 77
6.2 Simple β-reduction, using graphs . 77
6.3 Instantiation . 78
6.4 Instantiation with inappropriate copying . 79
6.5 Instantiation with an indirection node . 79
6.6 Sharing across function calls . 80
6.7 Sharing in an instantiated abstraction . 82
6.8 Comparison of instantiation methods . 82
6.9 Terms in weak head normal form . 83
6.10 Terms in Normal Form . 83
6.11 Example of α-capture . 85
6.12 Second example of α-capture . 85
6.13 Example of α-capture being avoided . 86
6.14 Variable renaming difficulty . 88
6.15 Term without and with ideal abstractions . 89
6.16 Figure 6.12 with ideal abstractions and renaming . 89

vii

Chapter 1

Introduction

A partial evaluator is a kind of interpreter that has the ability to accept a subset of its target

program’s input, performing symbolic computation whenever it does not have enough information

to produce a final value for an expression. Instead of emitting a value, a partial evaluator may emit

another program.

A canonical example of this involves a string formatting primitive printf. The function printf

can be said to take two arguments: a list of format codes, and a list of values to be formatted. The

output is a string. Supposing we have predefined functions formatInt and formatFloat, we could

write the function printf in Scheme as in figure 1.1.

(define printf

(lambda (flist vlist)

(if (null? flist) ""

(cond

((equal? (car flist) "%d")

(string-append (formatInt (car vlist))

(printf (cdr flist) (cdr vlist))))

((equal? (car flist) "%f")

(string-append (formatFloat (car vlist))

(printf (cdr flist) (cdr vlist))))

(else (string-append (car flist)

(printf (cdr flist) vlist)))

))))

Figure 1.1: An implementation of printf

Given a Scheme interpreter I, we can consider I a function that takes this function printf

along with the arguments that belong to it, and returns the string as a value.

1

I(printf, ’("%d" "%f"), ’(3 4.2))⇒ "3 4.2"

The interpreter will execute the printf function, which will parse the strings in the format list.

Each time an element of the format list is parsed, printf reads one of the values and passes it to

the appropriate formatting functions. Suppose we always run printf with the same format string.

In this case, printf will re-interpret the format list each time, coming to the same conclusions

about how to format the values in the value list.

In contrast, a partial evaluator P takes the function printf as an argument, but only some

of printfs values. Suppose we always ran printf with the same format list ’("%d" "%f"). We

could partially evaluate printf with respect to that list via the following equation:

P (printf, ’("%d" "%f"))⇒ figure 1.2

The code in figure 1.2 shows the result: everything that could have been done knowing only the

value of flist (the format list) has now been done. What was left over has been residualized—

emitted as residual code—to be run at a later time when the remaining inputs are available. In

order to do this, values have been propagated symbolically, recursive calls have been unfolded,

and a new function eliding the first argument has been created. Looking at it from a higher level

perspective, the layer of interpretation has been eliminated. The new function takes a list with two

elements and takes it for granted that the first element is an integer and the second argument is a

float.

(define printfpe

(lambda (vlist)

(string-append (formatInt (car vlist))

(string-append (formatFloat (car (cdr vlist)))

""))))

Figure 1.2: Function printf after partial evaluation

This confers a major engineering advantage. Without a partial evaluator, a programmer con-

cerned with the execution speed of the program would be tempted to make a more specific version

2

of printf, one that only formats one integer followed by one float. This has some major disad-

vantages. It requires the programmer to duplicate work. The printf function will now have to

be “rewritten” for this special case. Having to rewrite a function means that there are now two

functions which will need to be tested, debugged, and maintained. Having two functions which

perform largely the same function means more work later if we decide to change the semantics of

the printf format string; we will have to remember that there are two versions of the function,

and changes to one of them will need to be mirrored in the other. This leads to unreliable, hard

to maintain code, and has been documented as a contributing factor in catastrophic failures in

real-world systems[28].

1.0.1 On-line and Off-line Partial Evaluation

An important distinction is made in how a partial evaluator works. Some partial evaluators function

very much like interpreters, except that the partial evaluator uses symbolic interpretation when the

value of a variable or expression is not known. This is known as on-line partial evaluation. Such

partial evaluators tend to be easy to write, very accurate, and very unstable, as we will discuss in

the rest of the chapter.

An alternative is to use a preprocessor to determine which expressions should be knowable

and which should be treated as symbols. The preprocessor makes the decisions, and the partial

evaluator performs the resulting actions. This two-stage process is called off-line partial evaluation.

Such partial evaluators tend to be stable, but miss opportunities for specialization that an on-line

partial evaluator would have taken.

1.1 The Futamura Projections

The behavior of a partial evaluator P is often described via three equations[11] known as the

Futamura Projections, named for their discoverer.

3

1.1.1 First Projection

Let M be the source code (in some language L) of a program which takes two inputs s and d. M

can be run by making use of an L-interpreter I, as described by the following equation:

I(M, (s, d))⇒ x.

Here, I takes two parameters: M , the program to be interpreted; and s and d, the inputs1 to

M . The interpreter performs the necessary computations, producing the result x. (Assume that I

is itself written in a top-level language T .)

The first Futamura projection has a form similar to the equation for interpreters.

P (M, s)⇒Ms,where I(Ms, d)⇒ x

Here, the partial evaluator P is applied to M and one input s. The result of the partial

evaluation is a new program Ms, which takes the remaining input d and produces the result x

that would have been produced had both inputs been made available at the beginning. While an

interpreter needs to know both of the inputs to M to work, a partial evaluator only needs to know

a subset of them.

The existence of a program such as Ms follows from the S-m-n theorem[10] of logic, and can

be made trivially by currying M and applying it to s. However, we usually expect that most of

the computations in M that depend only on s and other constants within M itself will have been

completed and hard-coded into Ms.

If we have a partial evaluator for our top-level language T , then we can apply it to the L-

interpreter, yielding a very interesting result:

P (I,M)⇒ IM ,where IM (s, d)⇒ x

The program IM takes the values that M would have needed during its interpretation. Note

that IM is “written” in the top-level language and encodes the execution of program M . In short,

1s and d represent static and dynamic input, about which more will be said later.

4

M has been compiled!

1.1.2 Second Projection

The second projection is similar to the first projection, except that the argument to the partial

evaluator is itself a partial evaluator. When P and P ′ are instances of the same partial evaluator,

it is called self application.

P ′(P,M)⇒ PM ,where PM (s)⇒Ms.

The second partial evaluator P partially evaluates the term M , under control of the first partial

evaluator P ′. Not having its second input, P cannot complete the partial evaluation of M ; it has

to wait until s is supplied. Again, while this result could be achieved simply by currying P , it is

understood that much or all of the work that P would have to do in processing M is completed in

the term PM . The term PM is also called Mgen, for “M -generator”.

In practice, it is not uncommon to observe that PM (s) runs an order of magnitude faster than

P (M, s). (Unfortunately, it is also not uncommon for PM (s) to be an order of magnitude larger

than P (M, s) before evaluation.)

Again, we can place an interpreter I in place of M .

P (P, I)⇒ PI ,where PI(M)⇒ IM .

This time, we’ve created PI , which is a compiler for the language interpreted by I. If we

can think of the first projection as being able to take an interpreter and use it to perform a

compilation, then the second projection takes an interpreter and a partial evaluator and uses it to

create a compiler.

1.1.3 Third Projection

The third projection uses three partial evaluators.

P ′′(P ′, P)⇒ P ′
P ,where P

′
P (M)⇒ PM .

5

The term PP is also called Pgen, or a code generator.

Applying Pgen to an interpreter I has the same effect as the second projection: the interpreter

is turned into a compiler PI . The difference is that PP is expected to run faster than P (P, I).

1.2 Combinatorial Explosion

One serious problem that can occur during self application is known as combinatorial code explosion.

The size of the result of a second or third projection could be worse than exponential in the size of

the original partial evaluator.

To see why this happens, consider the following outline of a partial evaluator P :

P = λe.if known(e) then compute(e) else residualize(e)

A partial evaluator works by asking, for each subexpression e, whether or not it knows enough

about e to compute its value. If so, it performs a computation using e, otherwise it emits the source

code for e.

Now consider what happens when P is applied to some fragment of M :

M = . . . x+ 20 . . .

The function P will compute known(x + 20). If x is known to the partial evaluator (i.e., it is

determined by constants in M or the input s) then its value will be added to 20. Otherwise the

source code “x + 20” will be emitted. During this process P itself may be called recursively on

these subexpressions.

This process breaks down during the second projection, when P is applied to M via another

partial evaluator P ′, as in P ′(P,M). When P is processing x+ 20, it will first ask if it knows the

value of x. In this case, P has not yet been told which inputs will be given to M . It is not possible

for P ′ to say whether P will know the value of x or not. Therefore, P ′ will decide that the value

of known(x + 20) in P is itself unknown, neither true nor false, causing both branches of the if

statement in P to be processed. The call to known also will be unfolded. As these functions contain

6

recursive calls to P , the end result is that each subexpression2 of M ends up having its own slightly

specialized version of P “wrapped around” it.

This phenomenon makes the second projection very expensive or impossible to compute, to say

nothing of the third projection.

1.3 Binding Time Analysis

One effective method for preventing combinatorial code explosion is the use of Binding Time Anal-

ysis, or BTA. The Binding Time Analyzer is given a program and told which of the inputs will

be known during the partial evaluation phase. The result is a program in which every sub-term

has been annotated as either “static” (meaning that the term is known at partial evaluation time

and should be treated as code) or “dynamic” (meaning that the term known only at run-time, and

should for now be treated as text).3 This style of partial evaluation which uses a BTA preprocess-

ing phase is called off-line partial evaluation. The convention is to underline the terms that are

dynamic[20]. When BTA is not used, the style is called on-line partial evaluation.

For example, the term

M = (λy.λx.λf.f(+ y 3)(+ x 4))10

might be annotated as

M ′ = (λy.λx.λf.f(+ y 3)(+ x 4))10

if we told the binding time analyzer that y would be known.

The partial evaluator then gets M ′ and s as inputs. The parts that are underlined are residual-

ized. They can be moved around like symbols or text, but not evaluated. Further, these underlined

parts will appear in the output once the partial evaluation is finished. Only the parts that have

not been underlined are evaluated.

2It can be worse, as some subexpressions, such as loops, may be unrolled before this “wrapping” occurs, further
increasing the size of the target program.

3Some partial evaluators use more complex domains than this, including annotations such as “partially static”.

7

The function known does not need to make recursive calls to P , all it has to do is read the

annotation. Further, in the second projection P ′(P,M ′) the inner partial evaluator P is analyzed,

and has access to the annotations in M ′ and therefore has the information it needs to decide the

value for known. The resulting program PM ′ is therefore much smaller. The first partial evaluator

to make use of this was Mix in 1984[15, 16].

The advantages of off-line partial evaluation are increased stability and control. Different strate-

gies of partial evaluation can be tried by varying the algorithm used by the binding time analyzer,

and many source-to-source transformations called “binding time improvements” have been pub-

lished that increase the accuracy of BTA.

This increased stability is not free; the cost is lost opportunities for specialization. BTA is

an approximation—many decisions have to be made about how to treat records that have some

static data, and variables that will have either static or dynamic data during different points of the

program’s execution. Because an annotation of “static” is taken as a guarantee that the term will

always be known, any doubt results in an annotation of “dynamic”.

An example of this is given in [7]:

(λf.(g (f d) f) λa.a)

In this example g and d are dynamic variables. If we mark λf and λa.a as static, we will have

the annotated term

(λf.(g (f d) f) λa.a)

the result will be the term

(g d λa.a)

But this is incorrect, because λa.a is static, and should not appear in the final result. As a

result, the λa.a will have to be marked dynamic, and the function call (f d) left unfolded as (λa.a d).

This kind of situation has been the inspiration for much research into binding-time improvements,

8

source-to-source transformations that preserve the meaning of a term but allow for better results

from the binding-time analysis.

Online partial evaluators re-evaluate the binding time of a term each time it is encountered,

enabling them to take advantage of static data where an off-line partial evaluator would not have

been able to. The previous example would have resulted in the term (g d λa.a) with no need for

concern about the binding time of λa.a.

9

Chapter 2

Fundamental Techniques

The purpose of this chapter is to present the ideas necessary to build a partial evaluator using the

λ-calculus. For the λ-calculus, we use the following grammar:

Λ ::= (Λ1 · · · Λn) | λx1 . . . xn.Λ | x

This grammar is perhaps not the most common, but it is useful in that applications are easily

noticed as they (and only they) are enclosed by parentheses.

2.1 Functional Representation

In order to represent programs in the λ-calculus, including integers, data-structures, and abstract

syntax trees, we need to use functions. The techniques for these representations are well known,

and we review them here for completeness. One important idea that needs to be emphasized is that

these functional representations are all in normal form. The ability to represent arbitrary data by

functions in normal form is an important part of the partial evaluators discussed here.

2.1.1 Church Numerals

Perhaps the best known functional representation is the Church Numeral[4]. A church numeral

n is represented by the function λf x.(f(f(f · · · (f x) · · ·))), where f is repeated n times. The

Church numeral says that something should be repeated n times, and allows you to specify what

that something is. Addition, multiplication, and exponentiation of Church numerals are all very

10

straightforward.

plus m n = λfx.(m f (n f x))

times m n = λfx.(m (n f) x)

power m n = λfx.(m n f x)

2.1.2 Disjoint Types and Pairs

Beyond integers, we can also represent arbitrary disjoint types[29]. Suppose we have a type S, with

constructors S1 . . . Sn. We can represent a term t = Si(t1, t2, . . . , tm) by

t = λx1 . . . xn.(xi t1 · · · tm)

The xi represent functions that specify what to do if the term t turns out to be an instance of

the constructor Si.

Booleans The boolean type has two constructors, true and false. They are represented as

true = λx1x2.x1

false = λx1x2.x2

We can define functions on these boolean values by thinking in terms of what we want to do

with them. For example, to define boolean and and or, we have the functions

and = λab.(a b false)

or = λab.(a true b)

To take the boolean conjunction of a and b, we apply a to b first; since if a is true, then b is

the value we want to return. The second argument is false, which is the value of the expression

should a turn out to be false.

Similarly, an if statement is defined by

if = λcte.(c t e)

11

Where c is the boolean conditional, and t and e are the then and else branches, respectively.

Pairs The pair has one constructor with two arguments.

pair t1 t2 = λx1.(x1 t1 t2)

π1 = λp.(p λxy.x)

π2 = λp.(p λxy.y)

We have only one function, which tells us what we are supposed to do with the two components

of the pair. It is interesting to note that the boolean values true and false correspond to the pair

selection operations π1 and π2.

Recursive Types

This technique also generalizes to recursive types. The list type has two constructors, one that

takes no arguments (nil) and one that takes two arguments (cons). Some standard definitions are

nil = λx1x2.x1

cons t1 t2 = λx1x2.(x2 t1 t2)

nil? = λl.(l true λht.false)

car = λl.(l error λxy.x)

cdr = λl.(l error λxy.y)

The three “selector” functions are similar to those for pairs, except we also need to determine

not only the contents of the list, but what kind of list is being examined. The error term can be

anything that the user would like to return in the event of an error, such as taking the car or cdr

of an empty list.

Similarly, binary trees also have two constructors. The empty tree takes zero arguments; and a

branch takes three arguments, the data, the left child, and the right child.

12

empty = λx1x2.x1

branch t1 t2 t3 = λx1x2.(x2 t1 t2 t3)

empty? = λl.(l true λdht.false)

getdata = λl.(l error λxyz.x)

getleft = λl.(l error λxyz.y)

getright = λl.(l error λxyz.z)

The balanced binary tree containing numerals 0–6 would look like this:

λeb.(b λfx.(f (f (f x)))

λeb.(b λfx.(f x)

λeb.(b λfx.x λeb.e λeb.e)

λeb.(b λfx.(f (f x)) λeb.e λeb.e))

λeb.(b λfx.(f (f (f (f (f x)))))

λeb.(b λfx.(f (f (f (f x)))) λeb.e λeb.e)

λeb.(b λfx.(f (f (f (f (f (f x)))))) λeb.e λeb.e)))

2.2 Higher Order Abstract Syntax

Abstract syntax trees are easily represented with this method, with an important modification.

In the λ-calculus there are three kinds of terms. Application nodes take two arguments, one

for the function and one for the argument. Abstraction and Variable nodes take one argument,

the expression being represented. The variables are special: the argument to the constructor

is the variable bound by the abstraction itself—this is what makes this syntax “higher order”

[24, 18]. This has a major advantage; the variable scope rules are given to us for free by the

underlying interpreter. Otherwise, it is very cumbersome to represent variables, since we would

need to differentiate between variables explicitly, and provide our own function to handle variable

substitution. The constructors for the abstract syntax tree are as follows:

13

App m n = λabc.(a m n)

Abs λx.m = λabc.(b λx.m)

Var x = λabc.(c x)

The translation from λ-terms into higher order abstract syntax is as follows:

bxc = λabc.(c x)

bM Nc = λabc.(a bt1c bt2c)

bλx.Mc = λabc.(b λx.bMc)

We will assume that all variables are bound. The translation scheme itself does not require

it, but our evaluators would need a more complex representation to distinguish between free and

bound variables otherwise.

For example, we can translate the expression (λq.q λxw.(x w)) as

λabc.(a λabc.(b λq.λabc.(c q)) λabc.(b λx.λabc.(b λw.λabc.(a λabc.(c x) λabc.(c w))))))

The expression has been represented by a function that takes three arguments: the first is a

function that tells what we want done with application nodes, the second is a function that tells

what we want done with abstractions, and the third is a function that tells what we want done

with variables. As an example of how we could use such representations, suppose we wanted to

find the size of an expression. The following term accomplishes that:

Size = (Y λsize m.(m

λmn.(plus one (plus (size m) (size n)))

λm.(plus one (size (m one)))

λx.x))

Y = λh.(λx.(h (x x)) λx.(h (x x)))

one = λfx.(f x)

The Y combinator is the standard implementation of the fix-point operator. The second line of

Size counts the size of application nodes (1 + size of both children), and similarly the third line

14

counts the size of abstraction nodes. By passing the value one into the abstraction, variables will

be assigned the value of 1 as a base case to the recursion. Therefore the function on the fourth line

can just return the variable itself.

Similarly, if we wanted to count the number of occurrences of variables, we omit the plus one

parts of the two functions.

CountV ars = (Y λcountvars m.(m

λmn.(plus (countvars m) (countvars n))

λm.(countvars (m one))

λx.x))

In addition to simple things like counting nodes, it is also possible to interpret expressions using

this technique. Mogensen gives the following self-interpreter in [18].

E = (Y λem.(m λmn.((e m) (e n))

λm.λv.(e (m v))

λx.x))

The second line contains a function that interprets applications by interpreting the parts and

applying the results. The third line interprets functions by feeding an argument to the function

and interpreting the result. The last line interprets variables, which represent themselves.

The input to this function is a term in higher order abstract syntax (HOAS), but the output is

a raw, unrepresented λ-term. This term will have been reduced according to the reduction scheme

of the base language, using the same parameter passing scheme and level of normalization.

2.3 Partial Evaluation

Most interpreters do not perform every possible computation in a term. Rather, they stop once

the term is in Weak Head Normal Form (WHNF). In this form, the root of the term is either an

abstraction or an application of a non-abstraction to a set of parameters, each of which are also in

WHNF. An intuitive way of expressing this is to say that in WHNF we do not evaluate anything

15

under a λ.

Normalization is a more aggressive form of interpretation, in which a term is first reduced to

WHNF, and then all sub-terms are normalized. In contrast to WHNF, the reduction to normal

form processes terms underneath a λ, and no reducible expressions will remain.

2.3.1 Normalization

In addition to a self-interpreter, Mogensen also presents a self-normalizer. One difference between

the self-normalizer and the self-interpreter is that the self-normalizer returns its result in HOAS,

instead of as an actual λ-calculus term. Representing the output in HOAS allows us to analyze the

expression returned by the normalizer.

Outputting the result in HOAS causes the normalizer to be more complex than the self-

interpreter. The reason for this complexity can be seen in the way an application (M N) is

handled. In the self-interpreter, we simply interpret M and N , and then apply one result to the

other. Since the output is an unrepresented λ-term, we do not need to be concerned with precisely

what kind of λ-term it is. But in normalization, we need to return a representation of the result,

not just the result itself.

For the example of M applied to N , we have two possibilities of interest: M could normalize

into a function, or into something else. If M normalizes to a function, we can apply that result

to N as usual, and require the resulting term to be responsible for representing the result. In

other words, we need to be able to produce an “executable” version of M . But, if M turns out

not to be a function, the steps just described will not work. For this case, we need to return a

representation of M applied to the normal form of N . In other words, we need to be able to

produce a “textual” version of M . Because we cannot know beforehand whether M will reduce

to a function or something else, for each term we need to be able to retrieve it in both executable

form or represented form.

2.3.2 PEVs

To do this we need to make use of two techniques. The first technique is to represent λ terms as

pairs; the first part of the pair will contain the function which reduces the term, and the second

16

part of the pair contains the HOAS representation of it.

This idea is very significant, as it encapsulates a property of programs during partial evaluation:

expressions undergoing partial evaluation are both code being executed and data being manipulated.

Thus, the first half of the pair represents unfolding or specialization, and the second half of the

pair represents residualization. In our research, we describe this type as a recursive type PEV ≡

(PEV → PEV) × Exp, where PEV stands for Partial Evaluation Value. For any PEV, we have

the option of applying it as a function, or retrieving its representation.

The second technique is the recursive function D1, which has the property that ((D dxe) dye) →

(D d(x y)e). It has type Exp→ PEV , and is used to force the residualization of an expression. It

is similar to the ↓ operator of Danvy’s type directed partial evaluation, where we can take a live

function and get back its text if we know the type[7]. The implementation of D is as follows:

D = (Y λpm.λx.(x λv.(p λabc.(b m (v λab.b))) m))

The variable p is the fix-point of D, and m is the argument, which we assume is a λ-term in

HOAS. The λx.(x...) creates a pair/PEV. The first part is what to do if this term is applied to

another. We capture the argument of such an application in v, and create a representation of m

applied to the representation of v. (We apply v to F because we assume that v itself is also a

PEV.) This representation of (m v) is fed to a recursive call to D so that it can be applied to more

arguments. The other half of the pair returned by D is just m itself.

The complete normalizer (modified to coincide more closely with the format of the partial

evaluator) is as follows.

R = λm.(R′ m λab.b)

R′ = (Y λrm.(m λmn.((r m) λabc.a (r n))

λm.(λgx.(x g λabc.(c λw.(g (D λabc.(a w) λab.b))))

λv.(r (m v)))

λx.x))

D = (Y λpmx.(x λv.(p λabc.(b m (vλab.b))) m))

1In [18], this function is called P .

17

There are three functions passed to m in the R′ combinator above, and they correspond to the

functions in the self-interpreter. Each of these functions create a PEV out of a different kind of

term. The first handles applications by normalizing the function m, taking the function part of the

resulting PEV, and applying it to the normalized term n. The B combinator implements the first

technique described above, in creating a PEV out of a function. The first half is the function g

itself, while the second half is the same function that has been residualized by the D combinator.

2.3.3 Eliminating Recursion

In [19], Mogensen extends the idea of this normalizer to that of a self-applicable online partial

evaluator. The reason that the normalizer is not self-applicable to begin with is that it does not

have a normal form, which will cause self-application not to terminate.

The source of the problem is the two Y combinators, which are used for the recursions in the

normalizer. The first Y combinator is used to propagate the three functions throughout the ex-

pression being normalized. The second Y combinator is used in the residualization-forcing function

D, which builds successively larger applications as more arguments are given to it. As it turns out,

both of these recursions can be eliminated.

In the case of the first recursion, notice that the same three functions are passed into every

node, though in fact the representation would allow for a program which passed different functions

to different nodes. This representation is more general than what is actually required. Rather

than using recursion to propagate these functions, we can eliminate the recursion altogether and

pass the combinators to all of the sub-terms simultaneously by using the following modified HOAS

translation scheme d·e.

dMe = λ a b . bMc

bxc = x

bM Nc = a bt1c bt2c

bλ x . Mc = b (λ x . bMc)

This eliminates one source of recursion; the resulting normalizer follows. The initial Y is

eliminated, further, the three functions now do not need to reference R directly as they did before,

18

so we can define them as separate combinators.

R = λm.(R′ m λab.b)

R′ = λm.(m AB)

A = λmn.((m λab.a) n)

B = λgx.(x g λab.(b λw.(g ((D λab.w) λab.b))) m)

D = (Y λpmx.(x λv.(p λabc.(b m (vλab.b))) m))

The second problematic recursion is in the D combinator. The D combinator was first defined

as

D ≡ (Y λd.λm.λx.(x λv.(d λab.(a (m a b) (v F a b))) m))

which Mogensen explains is a solution to the equation

D =β λm.λx.(x λv.(D λab.(a (m a b) (v F a b))) m)

Again, this recursion is more general than necessary, since we know that x will be a boolean

value, and may not need to expand the recursive call to D. For an ordinary function x we would

have to assume that the first argument is always used.

Therefore, we rewrite the equation as

D M X =β (X λv.(D λab.(a (M a b) (v F a b))) M)

where X is restricted to being either T or F . This means that X is a projection function, which

will either select the first half of the pair (in which case we will need to expand the inner call to D)

or else the second half, where we will not need D at all. Either way, we can wait until X is given

before expanding D.

We can cause the recursion to occur inside the term rather than on the outer level by rewriting

D as:

19

D ≡ (Q Q)

where

Q ≡ λq.λm.λx.(x λq′.λv.(q′ q′ λab.(a (m a b) (v F a b)))

λq′.m

q).

This new implementation of D has a normal form, and with that, so will the new normalizer. This

normalizer can be turned into a partial evaluator by accepting two arguments rather than one in

the main function.

P ≡ λmn.(R λab.(a (m a b) (n a b)) F)

This partial evaluator is self-applicable, and follows the behaviors specified by the Futamura

projections. As we will show later, the evaluation still undergoes combinatorial code explosion, but

because the partial evaluator is so small, we are able to contain the computation in the amount of

memory available in today’s computers. The full source is in figure 2.1.

With the recursion eliminated from the combinators, the actions taken by the combinators to

effect partial evaluation are more apparent. Recalling that a PEV is a pair in which the first half

is a function of type PEV → PEV and the second half is a HOAS represented expression, we can

describe these combinators them here in terms of PEV s, .

A : PEV → PEV → PEV

B : (PEV → PEV)→ PEV

D : Exp→ PEV

The A combinator takes two arguments m and n which will have been converted into PEVs

by the previous actions of the partial evaluator. It then takes the first component of the function

argument m and applies it to n, resulting in a new PEV. The function of the A combinator, then,

is to perform the application of any two PEVs given to it. Note that it will always choose to

specialize, never to residualize.

The B combinator converts an abstraction g into a PEV. The first component of the PEV

should be the function g itself—since the body of g has been converted into a PEV, this gives us

the correct type.

20

T = λab.a
F = λab.b
Q = λx.(x λq′v.(q′ q′ λab.(a (m a b) (v F a b)))

λq′.m
q)

D = (Q Q)
A = λmn.(m T n)
B = λgx.(x g λab.(b λw.(g (D λab.w) F a b)))
R = λm.(m A B F)
P = λmn.(R λab.(a (m a b) (n a b)))

Figure 2.1: Mogensen’s Partial Evaluator

In order to form the second component it is necessary to use the D combinator. The D

combinator is the residualization operator. It takes an expression as an argument and returns a

PEV, with the property that for any expression w and PEV M , ((D w)1 M)⇒ (D b(w M2)c. The

action of D is to produce a PEV that can only be residualized, even if we take its first component.

The B combinator creates a new abstraction for w, applies D to w, and then applies g to the

result. Given the property of D mentioned above, this causes a residualization of the entire body

of g. The application to F a b seen at the end is there to select out the expression component of

the resulting PEV, and then to perform book-keeping with the HOAS.

Examining the code for Mogensen’s evaluator, in particular, the A combinator, it becomes clear

that there is little to control the progress of the partial evaluation. All applications are performed.

This is an effect of the use of this particular HOAS: all applications share the same representation,

and so all applications will be handled using the A combinator. The subject of this thesis is how

to add control mechanisms to the partial evaluator, and how to expand these techniques to larger

languages.

2.4 Related Work

Online partial evaluators are often considered not to be self-applicable in practice, due to the

combinatorial explosion that results when self-application is tried. However, it is possible to self-

apply successfully without binding time analysis. In 1991, Glück gave an example of a self-applicable

partial evaluator that uses Turchin’s principle of metasystem translation[12].

21

In chapter 7 of [26], Ruf also discusses techniques for generating code generators without BTA

by using special data structures which allow the partial evaluator to infer binding time information

at run-time. These techniques do not allow self-application, however.

In [30] Peter Theimann published a code generator that made use of HOAS. Like Mogensen’s

evaluator, Theimann’s is very small (“six lines”). The target program itself becomes its own code

generator, i.e., the code generator has been inlined. Beyond that, the two systems are quite different:

Theimann’s evaluator is a multi-level code generator, is off-line, and is written in continuation

passing style.

These HOAS-based partial evaluators are interesting in that they tend to be very small, and

have a simple structure. In effect, they cause the partial evaluator to be inlined into the code being

specialized, creating a self-specializing program. This simplicity is also their greatest limitation—

there is no mechanism to control the partial evaluation process. In [5], we published a modification

of Mogensen’s partial evaluator, in which we introduced strategies as a control mechanism. While

we were able to demonstrate some of the tradeoffs and control that strategies have the potential to

offer, we were not able to stabilize the third projection.

22

Chapter 3

Strategies

3.1 Strategy Based Partial Evaluator

Examining the code for Mogensen’s evaluator, in particular, the A combinator, it becomes clear

that there is little to control the progress of the partial evaluation. All applications are performed.

This is an effect of the use of this particular HOAS: all applications share the same representation,

and so all applications will be handled using the same A combinator.

The decision about whether an application should be taken is made when the A combinator

selects the first component of its first argument. Hypothetically, we could instead use this version

of A, which always residualizes application.

A = λmn.(D λab.(a (m F a b) (n F a b)))

This would cause the partial evaluator to return its argument unchanged.

To add control, we need to have a more sophisticated decision mechanism. Suppose we have

a function s which could take two PEVs, decide whether they should be applied or residualized,

and then perform that operation for us. Then we could rewrite the A combinator. Instead of

A ≡ λmn.(m T n), we would have A ≡ λmns.(s m n). This function s is called a strategy.

The effect of Mogensen’s partial evaluator is to convert a source file into a function which

expands itself as much as possible. With strategies, we will convert a source file into a function

which will expand itself according to the advice given to it. For our initial discussion, we will

consider the advice given by the strategies to be compulsory. The partial evaluator creates this

23

self-expanding function and the strategy decides how far the expansion should go.

In fact, the addition of strategies to the partial evaluator suggests a number of benefits. First,

we will have a mechanism to control the inlined partial evaluator, as we have already explained.

One of the interesting features of the Mogensen evaluator is its simplicity, and the addition of

strategies will detract only minimally from that simplicity. Another benefit of strategies is the

modularity they bring to the partial-evaluation process. This modularity comes in two ways. First,

it separates the decision-making code from the rest of the partial evaluator. Second, as we will show

later, strategies can be composed, allowing us to combine two or more partial evaluation techniques

according to our specifications.

The combination of the modularity and the simplicity of the underlying evaluator suggests

that it may be possible to have some of the benefits of online evaluators (such as accuracy and

simplicity) and the benefits of offline evaluators (self-application). For example, we could have

strategies that made use of a binding-time analysis, but could selectively “override” a decision

made by the BTA to take advantage of opportunities for specialization that otherwise would have

been missed. Another way this could happen is by putting complicated, unstable code inside the

strategy so that self-application will not be affected by it.

The addition of strategies changes the type of PEVs:

PEV ≡ Strategy→ Result

Result ≡ (PEV → Result)× Exp

Strategy ≡ PEV → PEV → Result

Initially, a PEV asks for a strategy to tell it when the terms it encodes should be specialized

and when they should be residualized. The result then becomes the pair representing both function

and data. From the type you can see that a strategy is propagated to the sub-terms of a PEV.

As a running example, consider the terms V = λx.(λy.(y x) λz.z) and I = λq.q. Applying V

to I would reduce to λq.q. This is also the result if we use Mogensen’s partial evaluator:

P V I ⇒ Abs(λq.q)

24

P = λmns.(R λab.(a (m a b) (n a b)) s F)
R = λm.(m A B)
B = λgs.λx.(x

λv.(g v s)
λab.(b λz.(g (D λab.z) s F a b)))

A λmns.(s m n)
D = (Q Q)
Q = λqvs.λx.(x

λq′w.(q′ q′ λab.(a (v a b) (w s F a b)) s)
λq′.v

q)
T λab.a
F λab.b

Figure 3.1: Strategy-based partial evaluator

3.2 Simple Strategies

The simplest strategies to write are those that make the same decision in all circumstances. There

are two of these, called Expand All, which always instructs the partial evaluator to reduce, and

Expand None, which always instructs the evaluator to residualize. In the following discussion, let

<< · >> denote a PEV, and subscripts 1 and 2 denote taking the first or second component of

a PEV. Further, we will use constructors App and Abs rather than explicit higher order abstract

syntax.

3.2.1 Expand All

The Expand All strategy, or ΣAll, has the following definition.

ΣAll ≡ λm n.((m ΣAll)1 n)

The ΣAll strategy is passed to the first term m, producing a Result. Then it takes the function

component and applies that to n, producing another Result.

To implement this in λ-calculus, we η-contract away the n and use the Y combinator to handle

the recursion.

25

ΣAll ≡ (Y λσm.(m σ T))

The strategy partial evaluator P σ, given ΣAll, will behave almost exactly like Mogensen’s eval-

uator.

P σ [[λx.(λy.(y x) λz.z)]] [[λq.q]] ΣAll ⇒

(<< (λx.(λy.(y x) λz.z) λq.q) >> ΣAll)2 ⇒

(ΣAll << (λx.(λy.(y x) λz.z)) >> << λq.q >>)2 ⇒

((<< (λx.(λy.(y x) λz.z)) >> ΣAll)1 << λq.q >>)2 ⇒

(λx.(<< (λy.(y x) λz.z) >> ΣAll) << (λq.q) >>)2 ⇒

(<< (λy.(y λq.q) λz.z) >> ΣAll)2 ⇒

(ΣAll << λy.(y λq.q) >> << λz.z >>)2 ⇒

((<< λy.(y λq.q) >> ΣAll)1 << λz.z >>)2 ⇒

(λy.(<< (y (λq.q)) >> ΣAll) << λz.z >>)2 ⇒

(<< (λz.z λq.q) >> ΣAll)2 ⇒

(ΣAll << λz.z >> << λq.q >>)2 ⇒

((<< λz.z >> ΣAll)1 << λq.q >>)2 ⇒

(λz.(<< z >> ΣAll) << λq.q >>)2 ⇒

(<< λq.q >> ΣAll)2 ⇒

[[λq.q]] ≡ Abs(λq.q)

The ΣAll strategy is passed into the sub-terms of the input, causing all the computations to be

done.

26

3.2.2 Expand None

The Expand None strategy, written ΣNone, tells the partial evaluator not to perform any β-

reductions. It has the following definition.

ΣNone ≡ λm.(D (m ΣNone)2 ΣNone)1

The ΣNone strategy takes a PEV m, applies it to ΣNone and takes the expression component.

This is passed into the D operator, which returns a PEV. In order to make the types match, we

pass ΣNone to the PEV1 and then take the first component.

P σ [[λx.(λy.(y x) λz.z)]] [[λq.q]] ΣNone ⇒

(<< (λx.(λy.(y x) λz.z) λq.q) >> ΣNone)2 ⇒

(ΣNone << λx.(λy.(y x) λz.z) >> << λq.q >>)2 ⇒

((D (<< λx.(λy.(y x) λz.z) >> ΣNone)2 ΣNone)1 << λq.q >>)2 ⇒ · · ·

((D Abs(λx.App(Abs(λy.App(y, y)), Abs(λz.z))) ΣNone)1 << λq.q >>)2 ⇒

(D App(Abs(λx.App(Abs(λy.App(y, y)), Abs(λz.z))), Abs(λq.q)) ΣNone)2 ⇒

App(Abs(λx.App(Abs(λy.App(y, y)), Abs(λz.z))), Abs(λq.q))

The process is similar to that of ΣAll, but the expression component is taken instead of the

function component, and the D combinator creates a residualizing PEVs out of the expressions.

3.3 Composing Strategies

Both ΣAll and ΣNone pass copies of themselves to the sub-terms of the PEVs on which they operate.

There is no reason the strategy passed to a sub-term must be the same one, however. By having

strategies pass different strategies, we can produce different partial evaluation results. Further, this

mechanism allows us to compose strategies.

1Due to the definition of D, it really doesn’t matter which strategy is passed to it; all will have the same result.

27

3.3.1 Expand N

A simple composition is Expand N, which allows the user to specify how many levels of β-reductions

to perform.

Σn ≡ ((n λσm.(m σ)1) ΣNone), where n is some Church numeral

The Church numeral n indicates the number of levels to expand. This numeral is applied to

a term that is identical to the body of the ΣAll strategy. (In the case of ΣAll, the Y combinator2

makes an infinite chain of instructions to expand.) In the Σn case, this term is duplicated only n

times, and after all these copies are passed into some PEV , the final PEV is applied to ΣNone to

stop any further expansion.

In this example we use Σ2 to expand only the first two levels of β-reductions.

(P σ [[λx.(λy.(y x) λz.z)]] [[λq.q]] Σ2) ⇒

(<< (λx.(λy.(y x) λz.z) λq.q) >> Σ2)2 ⇒

(Σ2 << λx.(λy.(y x) λz.z) >> << λq.q >>)2 ⇒

((<< λx.(λy.(y x) λz.z) >> Σ1)1 << λq.q >>)2 ⇒

(λx.(<< (λy.(y x) λz.z) >> Σ1) << λq.q >>)2 ⇒

(<< (λy.(y λq.q) λz.z) >> Σ1))2 ⇒

(Σ1 << λy.(y λq.q) >> << λz.z >>)2 ⇒

((<< λy.(y λq.q) >> ΣNone)1 << λz.z >>)2 ⇒

(λy. << (y λq.q) >> ΣNone << λz.z >>)2 ⇒

(<< (λz.z λq.q) >> ΣNone)2 ⇒

(ΣNone << λz.z >> << λq.q >>)2 ⇒ · · ·

(D[[(λz.z λq.q)]] ΣNone)2 ⇒

[[(λz.z λq.q)]] ≡ App(Abs(λz.z), Abs(λq.q))

2We can think of the Y combinator as an implementation of the Church numeral for infinity.

28

3.3.2 Expand Below N

Using a similar technique we can write a strategy called Expand Below N, which residualizes the

topmost β-reductions, but performs the ones lower than them in the tree.

Σbelow−n ≡ λσm.(n (D (m σ)2 σ)1 Σall), where n is some Church numeral

This strategy Σbelow−n passes Σbelow−(n−1) to subterms, and residualizes the result. When n

reaches zero, Σall is passed instead, which specializes everything below it.

(P σ [[λx.(λy.(y x) λz.z)]] [[λq.q]] Σ<1) ⇒

(<< (λx.(λy.(y x) λz.z) λq.q) >> Σ<1)2 ⇒

(Σ<1 << λx.(λy.(y x) λz.z) >> << λq.q >>)2 ⇒

(D App((<< λx.(λy.(y x) λz.z) >> ΣAll)2, (<< λq.q >> Σ<1)2) Ex)2 ⇒ · · ·

(D App(Abs(x, x), Abs(q, q)) Ex)2 ⇒

App(Abs(x, x), Abs(q, q))

The Σx is to indicate that the choice of strategy does not matter.

This technique of composition gives rise to a class of strategies which make decisions based on

their own structure, but do not look at the content or structure of the terms being specialized.

Neither the simple strategies presented above nor these structured strategies are able to make

decisions based on the terms being processed. It is possible, though, to build a customized strategy

based on the structure of the term to be processed.

3.4 Propagation

Looking closely at the expansions of Σn and Σ<n, it becomes apparent that “level” does not

necessarily mean “distance from the root node”. The level is decremented each time the strategy is

29

passed to the function part of an application. The argument will be folded into the term and given

a strategy perhaps much later in the computation. If the strategy reaches ΣNone, the D combinator

passes this strategy to the arguments of the residualized PEV, causing all terms to be residualized.

For example, consider the following reduction, where each of the variables Ia through Ih repre-

sent the identity function:

(P σ [[(((Ia Ib) (Ic Id)) ((Ie If) (Ig Ih)))]] Σ2) ⇒

(Σ2 << ((Ia Ib) (Ic Id)) >> << ((Ie If) (Ig Ih)) >>)2 ⇒

((<< ((Ia Ib) (Ic Id)) >> Σ1)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

((Σ1 << (Ia Ib) >> << (Ic Id) >>)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

(((<< (Ia Ib) >> Σ0)1 << (Ic Id) >>)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

(((Σ0 << Ia >> << Ib >>)1 << (Ic Id) >>)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

(((ID App([[Ia]], [[Ib]]) Σ0)1 << (Ic Id) >>)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), (<< (Ic Id) >> Σ0)2) Σ0)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), (Σ0 << Ic >> << Id >>)2) Σ0)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])) Σ0)1 << ((Ie If) (Ig Ih)) >>)2 ⇒

(ID App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), (<< ((Ie If) (Ig Ih)) >> Σ0)2) Σ0)2 ⇒+

(ID App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), App(IApp([[Ie]], [[If]]), App([[Ig]], [[Ih]]))) Σ0)2 ⇒

App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), App(IApp([[Ie]], [[If]]), App([[Ig]], [[Ih]])))

The propagation can be visualized in figure 3.2.

The strategy decrements itself as it travels using something similar to a depth-first traversal

down the left side of the tree, and becomes Σ0 before it reaches Ia. The D combinator then passes

Σ0 across to the right side of the tree.

The consequences can be seen if we replace ((Ie If) (Ig Ih)) with a smaller term, say (Ie If),

when we get the following reduction.

30

@
Σ2

@
Σ1

@
Σ0

Ia Ib

@
Σ0

Ic Id

@
Σ0

@
Σ0

Ie If

@
Σ0

Ig Ih

Figure 3.2: Propagation of Expand-n through a large tree

(P σ [[(((Ia Ib) (Ic Id)) (Ie If))]] Σ2) ⇒

(Σ2 << ((Ia Ib) (Ic Id)) >> << (Ie If) >>)2 ⇒

((<< ((Ia Ib) (Ic Id)) >> Σ1)1 << (Ie If) >>)2 ⇒

((Σ1 << (Ia Ib) >> << (Ic Id) >>)1 << (Ie If) >>)2 ⇒

(((<< (Ia Ib) >> Σ0)1 << (Ic Id) >>)1 << (Ie If) >>)2 ⇒

(((Σ0 << Ia >> << Ib >>)1 << (Ic Id) >>)1 << (Ie If) >>)2 ⇒

(((ID App([[Ia]], [[Ib]]) Σ0)1 << (Ic Id) >>)1 << (Ie If) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), (<< (Ic Id) >> Σ0)2) Σ0)1 << (Ie If) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), (Σ0 << Ic >> << Id >>)2) Σ0)1 << (Ie If) >>)2 ⇒

((ID App(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])) Σ0)1 << (Ie If) >>)2 ⇒

(ID App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), (<< (Ie If) >> Σ0)2) Σ0)2 ⇒ · · ·

(ID App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), App([[Ie]], [[If]])) Σ0)2 ⇒

App(IApp(IApp([[Ia]], [[Ib]]), App([[Ic]], [[Id]])), App([[Ie]], [[If]]))

Even though (Ie If) was less than two levels from the root, it was still residualized, since it was

more than two applications away from the start of the reduction.

The traversal becomes more complex in the presence of abstractions. The strategy is still

31

propagated using a depth-first search, but the tree over which it traverses is changing dynamically.

Consider, for example, the expression (λx.(x M) (a b)), illustrated in figure 3.3. The strategy is

passed down the left side of the tree, but part of the right side (marked by Σ2) receives the strategy

before the M term does, because it is passed into the tree by the actions of the node processed by

Σ3. One implication of this is that part of the body of a function may be left unprocessed if the

argument to that function is sufficiently large.

@
Σ4

λx

@
Σ3

x M

@
Σ2

a b

Figure 3.3: Propagation of Expand-n through a changing tree

There are a few things we can do to influence the propagation of the strategy. The strategies

listed to this point have all passed a strategy into the function, and then passed the argument into

the result. We could have the strategy pass itself into the argument as well, if we can find a way

to turn that Result back into a PEV .

The most straightforward way to do this is to place the result inside an abstraction. The

abstraction would capture any strategy that was given to it in the future, and return the result

that was generated by the strategy that was given to it initially.

We can rewrite the Expand N strategy like this:

Σbn ≡ (n λσpq.((p σ)1 (λx.(q σ)))ΣNone), where n is some Church numeral

This causes the current strategy to be passed to both sides of the tree, rather than just the

first. This causes a breadth-first traversal to occur. Figures 3.2 now looks like figure 3.4. The right

child of the root node was processed using Σ1, instead of Σ0.

Further, the expression in figure 3.3 will be processed as in figure 3.5, in that the argument

passed into x will be pre-processed by Σ3, and will throw away the Σ2 when it is given to the result.

This method of changing the behavior of a PEV is interesting because it, in effect, allows

32

@
Σ2

@
Σ1

@
Σ0

Ia Ib

@
Σ0

Ic Id

@
Σ1

@
Σ0

Ie If

@
Σ0

Ig Ih

Figure 3.4: Propagation of Expand-Breadth-n through a large tree

@
Σ4

λx

@
Σ3

x M

@
Σ3

a b

Figure 3.5: Propagation of Expand-Breadth-n through a changing tree

a PEV to ignore a strategy that has been given to it. It also allows us finer control over the

propagation of strategies. The Σn strategies propagate according to the execution of a program,

but the Σbn strategies propagate according to the structure of a program’s abstract syntax tree.

3.5 Experimental Results

In order to observe the effect that strategies have on the partial evaluation process, we applied the

partial evaluator to three programs using a variety of strategies. The three programs we used were

Ackermann’s function, the exponentiation function, and a small interpreter. The interpreter and

the exponentiation function are standard examples used for partial evaluators. Interpreters show

the effect of self-application. Ackermann’s function is used as a running example in Mogensen’s

work, and therefore makes a good basis for comparison. All three of these programs use Church

numerals in this section, and will be expanded in the following chapters to use integers when we

expand the language.

33

The Church numeral version of Ackermann’s function is given by

λmn.(m λfm.(f (m f λx.x))

λmfx.(f (m f x))

n)

Ackermann’s function is only practically applied to C2 or C3; at C4 it becomes prohibitively

expensive to run3. Figure 3.6 show the results of running Ackermann’s function with C2 and C3 as

the first argument. The β column represents the number of β reductions required.

Expression β Expression β

Ack C2 C0 16 Ack C3 C0 33
Ack C2 C1 30 Ack C3 C1 173
Ack C2 C2 50 Ack C3 C2 833
Ack C2 C3 76 Ack C3 C3 3685
Ack C2 C4 108 Ack C3 C4 15,529
Ack C2 C5 146 Ack C3 C5 63,789
Ack C2 C6 190 Ack C3 C6 258,609
Ack C2 C7 240 Ack C3 C7 1,041,461

Figure 3.6: Ackermann’s function timings

Mogensen’s partial evaluator is able to specialize Ackermann’s function, which gives some im-

provement. We use M to denote Mogensen’s evaluator, and show the results in figure 3.7.

Expression β Speedup (β) Expression β Speedup (β)

M Ack C2 492 n/a M Ack C3 971 n/a

Ack2 C0 8 2.0 Ack3 C0 22 1.5
Ack2 C1 21 1.43 Ack3 C1 155 1.12
Ack2 C2 40 1.2 Ack3 C2 800 1.04
Ack2 C3 65 1.17 Ack3 C3 3621 1.02
Ack2 C4 96 1.125 Ack3 C4 15,402 1.01
Ack2 C5 133 1.1 Ack3 C5 63,535 1.00
Ack2 C6 176 1.08 Ack3 C6 258,100 1.00
Ack2 C7 225 1.07 Ack3 C7 1,040,441 1.00

Figure 3.7: M applied to Ackermann’s function

Figure 3.8 shows the corresponding computations using the strategy evaluator (which we will

denote P) and the Expand All strategy. Though it takes more β-reductions to generate Ack2 and

3Here Cn represents the Church numeral for n

34

Ack3, they produce the same results as in figure 3.7.

Expression β Speedup (β) Expression β Speedup (β)

P Ack C2 ΣAll 709 n/a P Ack C3 ΣAll 1401 n/a

Ack2 C0 8 2.0 Ack3 C0 22 1.5
Ack2 C1 21 1.43 Ack3 C1 155 1.12
Ack2 C2 40 1.2 Ack3 C2 800 1.04
Ack2 C3 65 1.17 Ack3 C3 3621 1.02
Ack2 C4 96 1.125 Ack3 C4 15,402 1.01
Ack2 C5 133 1.1 Ack3 C5 63,535 1.00
Ack2 C6 176 1.08 Ack3 C6 258,100 1.00
Ack2 C7 225 1.07 Ack3 C7 1,040,441 1.00

Figure 3.8: P and Expand All applied to Ackermann’s function

If we use Expand None, we get the same results that we would get if Ack were left unexpanded.

This is shown in figure 3.9. It takes far fewer β-reductions to generate AckCn with this strategy

than it does with Expand All.

Expression β Speedup (β) Expression β Speedup (β)

P Ack C2 ΣNone 446 n/a P Ack C3 ΣNone 473 n/a

Ack2 C0 16 1.00 Ack3 C0 33 1.00
Ack2 C1 30 1.00 Ack3 C1 173 1.00
Ack2 C2 50 1.00 Ack3 C2 833 1.00
Ack2 C3 76 1.00 Ack3 C3 3685 1.00
Ack2 C4 108 1.00 Ack3 C4 15,529 1.00
Ack2 C5 146 1.00 Ack3 C5 63,789 1.00
Ack2 C6 190 1.00 Ack3 C6 258,609 1.00
Ack2 C7 240 1.00 Ack3 C7 1,041,461 1.00

Figure 3.9: P and Expand None applied to Ackermann’s function

From the results of Expand All and Expand None, one can see that there is potential to make

some tradeoffs between efficiency at PE time and at runtime. This can be shown more clearly by

using the Expand N strategy. Figure 3.10 shows the costs of generating Ack2 and Ack3 for various

values of n, and how well these specialized functions do when applied to C0 and C1. These two

values were chosen because of the large speedups encountered for them in the previous timings.

You will notice in figure 3.10 that increases in n do not correlate completely to increases in the

number of β-reductions needed to generate the specialized Ackermann functions. This has to do

with the structure of the terms being evaluated; the cost of residualization may be higher if one

more step of computation is taken than if it is not taken. Typically, though, a larger value for n

35

Expression Name β C0 β C0 Speedup C1 β C1 Speedup

P Ack C2 Σ0 Ack2,Σ0
449 16 1.00 30 1.00

P Ack C2 Σ1 Ack2,Σ1
424 15 1.07 29 1.03

P Ack C2 Σ2 Ack2,Σ2
418 15 1.07 29 1.03

P Ack C2 Σ3 Ack2,Σ3
412 15 1.07 29 1.03

P Ack C2 Σ4 Ack2,Σ4
478 13 1.23 27 1.11

P Ack C2 Σ5 Ack2,Σ5
678 11 1.45 26 1.15

P Ack C3 Σ0 Ack3,Σ0
476 33 1.00 173 1.00

P Ack C3 Σ1 Ack3,Σ1
451 32 1.03 172 1.01

P Ack C3 Σ3 Ack3,Σ3
445 32 1.03 172 1.01

P Ack C3 Σ3 Ack3,Σ3
439 32 1.03 172 1.01

P Ack C3 Σ4 Ack3,Σ4
613 30 1.10 170 1.02

P Ack C3 Σ5 Ack3,Σ5
944 28 1.18 170 1.02

P Ack C3 Σ6 Ack3,Σ6
940 28 1.18 170 1.02

P Ack C3 Σ7 Ack3,Σ7
1140 27 1.22 169 1.02

P Ack C3 Σ8 Ack3,Σ8
1136 27 1.22 169 1.02

P Ack C3 Σ9 Ack3,Σ9
1205 25 1.32 167 1.04

P Ack C3 Σ10 Ack3,Σ10
1186 24 1.375 166 1.04

P Ack C3 Σ15 Ack3,Σ15
1156 24 1.375 166 1.04

P Ack C3 Σ20 Ack3,Σ20
1429 23 1.43 165 1.05

P Ack C3 Σ35 Ack3,Σ35
1409 22 1.5 157 1.10

P Ack C3 Σ30 Ack3,Σ30
1359 22 1.5 157 1.10

Figure 3.10: Ack2 and Ack3 for various values of Expand N

36

corresponds to a larger value for β. Once n is high enough, P will behave like M or like P with

Expand All.

The other version of Expand N, called Expand Breadth-N here, yields slightly different results.

In general, Expand Breadth-N reduces further than the corresponding Expand N, since the strategy

is copied to multiple places. Figure 3.12 shows these results. Sometimes strategies can do some

surprising things. When we apply Expand Breadth-N to a recursive version (given in figure 3.11) of

the exponential function4 the computation explodes for n > 4. This happens because computations

that normally would be passed Expand None ignore that strategy and unfold themselves instead.

An example that shows this is given in figure 3.17.

plus = λm n.λf x.(m f (n f x))
times = λm n.λf x.(m (n f) x)
pow = λm n.(m n)

We need these next three to make subtraction work
cToOpt = λc.(c λx s n.(s x) λs n.n)
chopOpt = λo.(o λt.t λs n.n)
optToC = (Y λotc opt f x.(opt λt.(f (otc t f x)) x))

dec = λm.(optToC (chopOpt (cToOpt m)))
sub = λm n.(optToC (n chopOpt (cToOpt m)))
exp = (Y λe n x.(isZero n c1 (times x (e (dec n) x))))

Figure 3.11: Recursive versions of arithmetical functions

3.6 Second Futamura Projection

The addition of strategies to the partial evaluator also changes the way self-application works. We

can consider a strategy to be a third parameter to the partial evaluator, resulting in a modification

to the Futamura projections, show in figure 3.13

Note that in the second and third projections we have the ability to use a different strategy at

each stage. We could use a more aggressive strategy for the first evaluator, where we are willing to

spend more time, and a faster strategy for the second evaluator. Or, if we find a strategy especially

4Using Church numerals nm can be represented simply as (m n). This makes a rather uninteresting example for
our partial evaluator, so we use a version that ignores this property of Church numerals and instead makes explicit
use of the Y combinator.

37

Expression Name β C0 β C0 Speedup C1 β C1 Speedup

P Ack C2 Σb0 Ack2,Σb0
449 16 1.00 30 1.00

P Ack C2 Σb1 Ack2,Σb1
425 15 1.07 29 1.03

P Ack C2 Σb2 Ack2,Σb2
416 15 1.07 29 1.03

P Ack C2 Σb3 Ack2,Σb3
407 15 1.07 29 1.03

P Ack C2 Σb4 Ack2,Σb4
728 10 1.60 24 1.25

P Ack C2 Σb5 Ack2,Σb5
678 8 2.00 21 1.42

P Ack C3 Σb0 Ack3,Σb0
476 33 1.00 173 1.00

P Ack C3 Σb1 Ack3,Σb1
452 32 1.03 172 1.01

P Ack C3 Σb3 Ack3,Σb3
443 32 1.03 172 1.01

P Ack C3 Σb3 Ack3,Σb3
434 32 1.03 172 1.01

P Ack C3 Σb4 Ack3,Σb4
1624 26 1.27 166 1.04

P Ack C3 Σb5 Ack3,Σb5
1430 22 1.50 155 1.17

P Ack C3 Σb6 Ack3,Σb6
1369 22 1.50 155 1.17

P Ack C3 Σb7 Ack3,Σb7
1338 22 1.50 155 1.17

P Ack C3 Σb8 Ack3,Σb8
1338 22 1.50 155 1.17

Figure 3.12: Ack2 and Ack3 for various values of Expand Breadth-N

1 P (M, s, σ)⇒Ms,where I(Ms, d)⇒ x
2 P ′(P,M, σ′)⇒ PM ,where PM (s, σ)⇒Ms

3 P ′′(P ′, P, σ′′)⇒ P ′
P ,where P

′
P (M,σ′)⇒ PM

Figure 3.13: Modified Futamura Projections

Expression β Speedup

P P Ack ΣAll ⇒ PAck 46,365 n/a
P P Exp ΣAll ⇒ PExp 576,805 n/a

PAck C2 ΣAll ⇒ Ack2 510 1.39
PAck C3 ΣAll ⇒ Ack3 1008 1.38

PExp C2 ΣAll ⇒ Exp2 986 1.43
PExp C4 ΣAll ⇒ Exp4 3117 1.42

Figure 3.14: Second projections of P with Ackermann and exponential

38

well suited to self-applications, we can use it for the self-applicative stages and then use some other

strategy when we want to specialize a different program.

Figure 3.14 shows some timings for the second projection. The expressions Ack2, Ack3, Exp2

and Exp4 are identical to the ones generated in the first projection. The second projection for Exp

was especially expensive. Some of this is due to the expense of computing with Church numerals—

especially decrement and equality—and some of this is due to standard combinatorial explosion

issues.

The next set of figures shows how using different strategies allows us to trade efficiency in one

stage to another. Figures 3.15 shows a second projection of the recursive exponential function

using various values of n for Expand N. Figure 3.16 shows the resulting generator being used to

specialize the exponential function with respect to the Church numerals 2 and 4, using Expand All.

Notice that as n increases, the amount of time to generate the second projection increases, but the

time needed to run the result decreases. Figures 3.17 and 3.18 shows similar experiments using the

Expand Below-N strategy instead of Expand N. The output of the second projection is similar to

the output shown in figure 3.15, but the time needed to generate the second projection grows much

faster as n increases.

Expression β Size

P P Exp Σ1 ⇒ PExp,1 5422 929
P P Exp Σ4 ⇒ PExp,4 5389 922
P P Exp Σ8 ⇒ PExp,8 6792 1180
P P Exp Σ16 ⇒ PExp,16 58,656 11,139
P P Exp Σ64 ⇒ PExp,64 406,924 77,405
P P Exp Σ128 ⇒ PExp,128 626,578 115,712
P P Exp Σ256 ⇒ PExp,256 576,641 110,025
P P Exp Σ512 ⇒ PExp,512 576,641 110,025
P P Exp ΣAll ⇒ PExp,All 576,805 110,025

Figure 3.15: Second projections with Expand N

Examining a strategy, one can distinguish between two kinds of expressions. Some of the code

of the strategy is responsible for deciding whether or not to perform the β-reduction, and for

propagation. The rest of the code performs applications or residualizations. It is significant that

the decision-making code does not end up in the residualized expression; the decision-making code

can be expensive or even non-terminating (all of the strategies presented here make use of the Y

39

Expression β Expression β

PExp,1 C2 ΣAll 1408 PExp,1 C4 ΣAll 4477
PExp,4 C2 ΣAll 1407 PExp,4 C4 ΣAll 4476
PExp,8 C2 ΣAll 1402 PExp,8 C4 ΣAll 4471
PExp,16 C2 ΣAll 1401 PExp,16 C4 ΣAll 4470
PExp,64 C2 ΣAll 1260 PExp,64 C4 ΣAll 4213
PExp,128 C2 ΣAll 986 PExp,128 C4 ΣAll 3117
PExp,256 C2 ΣAll 986 PExp,256 C4 ΣAll 3117
PExp,512 C2 ΣAll 986 PExp,512 C4 ΣAll 3117
PExp,All C2 ΣAll 986 PExp,All C4 ΣAll 3117

Figure 3.16: Performance of exponential function generator with Expand N

Expression β Size

P P Exp Σb1 ⇒ PExp,b1 5409 929
P P Exp Σb4 ⇒ PExp,b4 5355 922
P P Exp Σb6 ⇒ PExp,b6 6728 1180
P P Exp Σb8 ⇒ PExp,b8 393,397 76,376
P P Exp Σb10 ⇒ PExp,b10 401,071 78,112

Figure 3.17: Second projections with Expand Breadth-N

Expression β Expression β

PExp,b1 C2 ΣAll 1408 PExp,b1 C4 ΣAll 4477
PExp,b4 C2 ΣAll 1407 PExp,b4 C4 ΣAll 4476
PExp,b6 C2 ΣAll 1402 PExp,b6 C4 ΣAll 4471
PExp,b8 C2 ΣAll 1399 PExp,b8 C4 ΣAll 4454
PExp,b10 C2 ΣAll 1351 PExp,b10 C4 ΣAll 4376

Figure 3.18: Performance of exponential function generator with Expand Breadth-N

40

combinator, and none of them have a normal form) without needing to be concerned about the

effect they will have on the residualized code.

3.7 Third Futamura Projection and Code Explosion

The third projection is much more difficult to obtain, especially with the addition of strategies.

If we take the third projection of M , it takes 232,631 β reductions. On the system used for

experimentation, this took 38 seconds. If we take the third projection of P with Expand All, the

computation crashes the computer after many hours of computations. Much of our work on the

reducer in chapter 6 was motivated by the question of why this happens, and wanting to be sure

that lack of sharing in the reducer itself was not responsible for the failed result.

3.7.1 Combinatorial Explosion

A partial evaluator is an expanded interpreter that makes use of symbolic interpretation when the

values of expressions are not know. The structure of a partial evaluator can be written in the form

if known(exp) then eval(exp) else residualize(exp).

If the expression is known, then evaluate it as it would be in a standard interpreter; otherwise

residualize it. Note that the evaluator makes use of both information (the value of an expression)

and meta-information (whether or not it knows the value of an expression) to perform its task.

The information may be known or not known, but the meta-information is always available.

This changes during the second and third projections, however. A partial evaluator suffers

from a lack of information during the partial evaluator process, which causes combinatorial code

explosion. To understand why, consider the three partial evaluators given in the third Futamura

projection, PA(PM , PP) ⇒ Pgen. The first one, PA, is in the “active” position. The PA evaluator

is told both the input program and that input program’s static input. It will be able to examine

an expression, determine whether or not it knows enough to perform a computation statically, and

act accordingly.

The second partial evaluator PM is in the “middle” position. Since a partial evaluator is a

41

kind of interpreter, we can say that PA is running PM . Evaluator PM will have PP (the “passive”

evaluator) as its first argument, but nothing yet specified for its second argument. Consider the

effect this has on the if statement above; it is already true that PM might know enough about

exp to evaluate it, or it might know so little about exp that it needs to residualize it. But, since

the second argument to PM has not yet been given, it may be that PM cannot even tell if it knows

exp or not. Not only is the information lacking, but the meta-information is lacking also. As a

result, PA will decide that PM will have to wait until runtime before it can discover the value of

known(exp), and therefore will residualize the call to known(exp), and then attempt to specialize

both branches of the if statement. Note that eval and residualize are known, and will attempt to

break apart exp into sub-expressions. In fact, since eval and residualize will contain calls to the

partial evaluator itself, the effect is that PM is partially specialized with respect to many of the

sub-expressions of PP . This is the essence of combinatorial code explosion.

This leads to one obvious question: why does the Third Projection work for M and not for P?

The main reason seems to be the size of the evaluators. Mogensen’s M is only 131 nodes, while P

is 151 nodes (not including a strategy). The memory available on today’s computers is sufficient

to contain the computation needed for the third projection of M , but not for P .

The Futamura projections are written with a single partial evaluator in mind, but in fact the

equations still work even if the three partial evaluators are different. It is instructive to take the 8

permutations of the Third Projection of both M and P . The results are in figure 3.19. Changing

the active partial evaluator from M to P results in roughly a %50 slowdown, with similar results

from changing the passive evaluator from M to P . But changing the middle evaluator—the one

subject to combinatorial explosion—causes a slowdown of two orders of magnitude.

Exp Beta CPU

M M M 232,621 38
M M P 350,358 61.48
M P M 26,630,792 3321 (55 min)
M P P crashed crashed
P M M EAll 361,680 245
P M P EAll 546,211 428
P P M EAll 35,217,577 9762 (2h 42m)
P P P EAll crashed crashed

Figure 3.19: Third Futamura Projections with M and P

42

3.7.2 Third Projection and Strategies

The problem with the lack of information is that the partial evaluator continues to try making

reductions even though it doesn’t know enough information to terminate in a reasonable period of

time. This is why binding-time analysis helps: by limiting the evaluator to reducing expressions it

knows about for sure, we make termination much more likely.

This is one area where strategies can show their benefit. In figure 3.20 there are a few runs of

the third projection of Ackermann’s function with various values of n for Expand N. As n becomes

larger, more time is needed to run the third projection, but the corresponding Pgen runs faster.

Expression Size β

P P P Σ10 ⇒ Pgen10 644 9184
P P P Σ50 ⇒ Pgen50 47,672 643,247
P P P Σ70 ⇒ Pgen70 170,154 2,297,039
Pgen10 Ack ΣAll 3842 52,022
Pgen50 Ack ΣAll 3842 51,992
Pgen70 Ack ΣAll 3842 51,520

Figure 3.20: Third projection

43

Chapter 4

Expanding the Strategies

Strategies have several properties that offer benefits when added to a partial evaluator. First,

strategies add a decision mechanism to the partial evaluator. Instead of simply expanding at

every opportunity, strategies can make more nuanced decisions about the reductions they examine.

Second, because strategies themselves are kept outside of the partial evaluator, we can consider

them “off-budget” during self-application. In particular, strategies can contain code (such as the Y -

combinator) that has no normal form, but without causing non-termination. Though the additional

code needed to propagate strategies through the partial evaluator disables the third projection, we

are still able to use the second projection and select different tradeoffs. Third, strategies are

composable, making the partial evaluator more modular and flexible.

In the previous chapter, we were able to demonstrate these benefits, but the ability of strategies

to do interesting things has been sharply limited by the fact that the language we are using has

only three kinds of terms, and only one kind of reduction. This is a limitation because it gives the

strategy very little information to use to make its decision. Even if we are able to analyze the terms

easily, just knowing that the current node is, for example, an application node does not give us

much information. To address this limitation we will investigate several methods of expanding the

ability of strategies to make decisions. These methods include adding combinators to the HOAS for

representing variables, using a hybrid of HOAS and concrete syntax, adding types to the language,

and changing the process that strategies use from simple selection to a more general form of term

manipulation.

44

4.1 Content-Observing Strategies

The strategies presented in the previous chapter are only minimally aware of the terms they are

reducing. Though the structure of the target term controls the propagation of the strategy, the

decision of whether to unfold or residualize an application is made according to the internal structure

of the strategy itself, rather than the content of the terms. In order to be more useful, strategies

need to have more knowledge about the terms they are reducing.

Mogensen hints at this in his discussion of the combinatorial explosion observed at the third

projection ofM , explaining that the “non-critical reduction of non-linear redexes” was the problem.

This is one symptom of lack of binding-time information, but it does raise the question: what would

happen if the strategy were able to detect non-linear redexes? Other obvious strategies like “expand

if the argument is small”, or “only expand calls to function f” are also impossible to write.

Answering these questions with the current representation is not possible partly because of the

assumption that all variables are bound. For example, consider the size operation:

size e = (e λab.(inc (plus a b))

λg.(inc (g C1)))

Variables are bound to the value 1, and at other node types size simply takes the size of the

children and increments. The following example shows what happens when taking the size of the

term λx.(x x).

(size [[λx.(x x)]]) →

(size λab.(b λx.(a x x))) →

(inc (λx.(inc (plus x x)) C1)) →

(inc (inc (plus C1 C1))) →

(inc (inc C2)) →

(inc C3) →

C4
This won’t work in our case, because during partial evaluation we will reduce inside function

bodies, underneath a λ, and therefore need to deal with free variables. As an example, suppose we

are processing the term λy.λx.(x y), and need to take the size of the body of the λy abstraction.

45

The computation would look like this:

size [[λx.(x y)]] →

size λab.(b λx.(a x y)) →

(inc(λx.(inc (plus x y)) C1)) →

(inc(inc (plus C1 y)))

At this point no further computation can be done, and the size function will fail to return a

useful result.

4.1.1 Adding a Third Combinator

One way to allow for more interesting strategies is to expand the representation to handle variables

directly. The new representation will take three inputs instead of two. This new representation is

shown in figure 4.1.

dee = λabc.e, where x = (c x)
λx.e = (b λx.e)

(m n) = (a m n)

Figure 4.1: HOAS representation allowing variables

With this representation, we can know explicitly if a node is a variable, even if it is unbound.

This allows us to write a new size function:

size e = (e λab.(inc (plus a b))

λg.(inc (g C1))

λx.C1)

Now if we try to take the size of λx.(x y), we are successful.

size [[λx.(x y)]] →

size λabc.(b λx.(a (c x) (c y))) →

(inc(λx.(inc (plus C1 C1)) C1)) →

(inc(inc (plus C1 C1)))→ · · ·

C4
The change in representation will necessitate a corresponding change in the partial evaluator,

46

P = λmns.(R λabc.(a (m a b c) (n a b c)) s F)
R = λm.(m A B C)
C = λx.x
B = λgs.λx.(x

λv.(g v s)
λabc.(b λz.(g (D λabc.(c z)) s F a b c)))

A = λmns.(s m n)
D = (Q Q)
Q = λqvs.λx.(x

λq′w.(q′ q′ λabc.(a (v a b c) (w s F a b c)) s)
λq′.v

q)
T = λab.a
F = λab.b

Figure 4.2: Strategy-based partial evaluator, with represented variables

which is given in figure 4.2. A new combinator C is added which simply returns its argument; the

partial evaluator itself is no more powerful than the version that does not represent variables.

Expand Small

One strategy we can write with this new representation is Expand Small, shown in figure 4.3. It

takes a number n to quantify what is meant by “small” and two PEV s π and π′. After applying

itself to these two PEV s it checks to see if the argument π′ is smaller than n. If so, it reduces π,

otherwise, it residualizes π. We will represent this strategy by Σsmall,n, where n is the parameter

quantifying smallness.

Here is an example to illustrate the operation of Expand Small. First we use Σsmall,1:

P [[λx.(λy.(y y) λz.z)]] [[λq.(q q)]] Σsmall,1 ⇒

<< (λx.(λy.(y y) λz.z) λq.(q q)) >> Σsmall,1 ⇒

(Σsmall,1 << λx.(λy.(y y) λz.z) >> << λq.(q q) >>) ⇒

(Σsmall,1 << λx.(λy.(y y) λz.z) >> (π2 << λq.(q q) >> Σsmall,1)) ⇒

(Σsmall,1 << λx.(λy.(y y) λz.z) >> Abs(λq.App(V ar(q), V ar(q)))) ⇒

47

App((<< λx.(λy.(y y) λz.z) >> Σsmall,1), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(<< (λy.(y y) λz.z) >> Σsmall,1)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(Σsmall,1 << λy.(y y) >> << λz.z >>)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(Σsmall,1 << λy.(y y) >> (<< λz.z >> Σsmall,1))),

Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(Σsmall,1 << λy.(y y) >> Abs(λz.V ar(z)))), Abs(λq.App(V ar(q), V ar(q)))) ⇒ · · ·

App(Abs(λx.App(Abs(λy.App(V ar(y), V ar(y))), Abs(λz.V ar(z)))),

Abs(λq.App(V ar(q), V ar(q)))) ⇒

≡ [[(λx(λy.(y y) λz.z) λq.(q q))]]

Since the smallest argument in the example is λz.z, which has a size of 2, no applications are

performed.

Next we use Σsmall,2:

P [[λx.(λy.(y y) λz.z)]] [[λq.(q q)]] Σsmall,2 ⇒

<< (λx.(λy.(y y) λz.z) λq.(q q)) >> Σsmall,2 ⇒

(Σsmall,2 << λx.(λy.(y y) λz.z) >> << λq.(q q) >>) ⇒

App(Abs(λx.(<< (λy.(y y) λz.z) >> Σsmall,2)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(Σsmall,2 << λy.(y y) >> << λz.z >>)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(<< (λz.z λz.z) >> Σsmall,2)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx.(Σsmall,2 << λz.z >> << λz.z >>)), Abs(λq.App(V ar(q), V ar(q)))) ⇒

App(Abs(λx,Abs(λz.V ar(z))), Abs(λq.App(V ar(q), V ar(q))))

≡ [[(λx.λz.z λq.(q q))]]

The outer argument λq.(q q) has a size of 6, so it is residualized. However, the argument λz.z inside

the body of the outermost function is small enough, so the λy.(y y) is applied to it. The result is

48

(λz.z λz.z), which again meets Σsmall,2’s criteria for reduction, so it is reduced to λz.z.

If we use Σsmall,6, the entire expression is reduced.

Expand N Then

Often partial evaluation produces unfortunate results because the source code is ordered inconve-

niently. For example, consider the term

((λabc.λd.(d a b c) λx.(x x) λq.q λx.(x x))

There are three applications at the top level. If we apply the Σsmall,3 strategy none of these

applications will be performed, even though the argument to the λb term has a size of 2. This is

because the argument to the λa term has a size of 6, and must be performed first in order for the

λb redex to be reachable. This is a limitation of curried form in partial evaluation. We can unfold

(specialize) an uncurried function like λ(x, y).M if it is applied to two arguments when the second

is known but the first is unknown. This is not true of the curried form λx.λy.M , unless we do

something to recognize this situation and “lift” the λy outside of the function.

One way to solve this using strategies is to have a strategy that behaves like Expand All for one

level, and then like Expand Small afterwards. We can accomplish this by composing strategies. For

this example, we want a strategy that will perform the first few β-reductions at the top level, and

then gives control to Σsmall. This new strategy is called Expand N Then, and is a generalization of

Expand N.

Σn,then = λn.λσ.(n λe.λπ.(π e)2 σ)

Thus, (Σn,then n σ) performs β-reductions at the top n levels of the term, then reverts to σ.

Using this strategy with our example gives us:

P [[(λabc.λd.(d a b b) λx.(x x) λq.q)]] [[λy.(y y)]](Σn,then C2 (Σsmall C3))

= [[(λcd.(c λx.(x x) λq.q) λy.(y y))]]

The first two applications were reduced, while the third was residualized since it was too large.

49

The λ-calculus renderings of Σsmall and Σn,then are in figure 4.3.

Σn,then = λn.λs.(n λe.λt.(fst (t e)) s)
Σsmall = λn.(Y λesmall.

λπ1π2.
(λr1r2.(lt (size (snd r2)) n)

(fst r1 π2)
(fst (D (snd r1) esmall) π2)

(π1 esmall)
(π2 esmall)))

Figure 4.3: Expand Small and Expand N Then

These strategies allow finer control of partial evaluation in self-application as well. For exam-

ple, we can create an Ackgen using the second projection. If we use the ΣNone strategy, Ackgen

is of size 269, and needs 845 β-reductions to execute when applied to 2 and ΣAll. If we use

(Σn,then 5 (Σsmall 20)) the size is 263 and needs 843 β-reductions. Finally, using ΣAll results in a

much larger term of size 4446, but it only need 548 β-reductions.

4.2 First Order Abstract Syntax

Another approach to handling the problem of being unable to observe our terms is to move to a

concrete representation. To create a concrete representation we added two new operators to our

language: quote and comma. These operators are staging operators and are similar to systems

such as Scheme’s backquote and comma syntax[1]. Normal terms are considered to be at stage 0

and will be evaluated.

The quote adds one to the staging level, and indicates that the term should be evaluated at the

next stage. For example, consider the term (λa.′(λb.b λc.c) λd.d). The result of the execution will

be the term ′(λb.b λc.c). For the next phase of execution, we remove the ′ to get (λb.b λc.c), which

can be reduced. A quoted expression can have quotes within it; a quoted term within a state n

term will be at stage n+ 1. This process can continue indefinitely.

The comma operator, also called anti-quote, subtracts one from the staging level. It is used

to cause computation to occur at the current stage inside of an expression of a later stage. For

example, in (λa.′(λx.xλ , a) ′λy.y) the λy.y term will be placed inside of a stage 1 expression by a

50

stage 0 application. The result will be ′(λx.x λy.y).

Modifying the partial evaulator to use these operators yields the program in figure 4.4. The

most visible difference is that terms that would be output in the form λa b.M now have the form

′M . The concretization of the terms makes it easy to write language primitives in the reducer to

examine them, and simplifies their display. It also simplifies the reducer, allowing us to use a weak

head normal form reduction rather than full normalization. This is because the staging operators

eliminate the need to reduce the body of an abstraction to perform the computations.

Another benefit is that this format eliminates a lot of “administrative β-reductions” associated

with HOAS. This can be seen by examining the code for B, where λab.(b λw.(g (D λab.w) F a b))

is replaced by ′λw., (g (D ′w) F).

While this technique is interesting, in practice it does not give us much more than what we

started with. While it is true that we could add new primitives to the reducer to allow for exam-

ination of the concrete syntax, it is equally true that now we have no choice in the matter—we

must add them if we want to examine the terms at all. With HOAS, we already have the means

to examine terms. We also lose some ability we had before, in that once an expression is reduced,

we are unable to process it any further. In HOAS, we could take an expression and process it with

the partial evaluation combinators, or other combinators.

P = λmns.(R λab.(a (m a b) (n a b)) s F)
R = λm.(m A B)
B = λgs.λx.(x

λx.(g x s)
′λz., (snd (g (D ′z) s)))

A = λmns.(s m n)
D = (Q Q)
Q = λqvs.λx.(x

λq′.λw.(q′ q′ ′v (fst (w s)) s)
λq′.v
q)

Figure 4.4: Hybrid FOAS strategy-based partial evaluator

51

4.3 Annotated Terms

Some desired strategies—such as expanding calls to specific, named functions—cannot be expressed,

because they are based on extrinsic considerations. We can accommodate these strategies by

changing the representation yet again, to include an annotation field in each λ-term. Though this

clearly crosses the line from on-line to off-line partial evaluation—since the annotations on each

term will be made by some pre-processing step—we feel it is still interesting to see how strategies

can use these annotations. Furthermore, it demonstrates that the use of strategies is in some sense

more general than the use of binding-time analysis.

For this example the annotation will be a boolean value which expresses whether or not we

want to perform a β-reduction if given the opportunity. Annotations of this type are discussed in

chapter 7 of [17].

A λ-expression e is represented by

< X, λabc.ē >, where x = (c x)

λx.e = (b X λx.e)

mn = (a m n) >

X is T or F.

The translation of terms to PEV ’s is as follows:

x 7→ x

m n 7→ λσ. (σ m n)

λx.e 7→ let g = (λx.dee σ) in < < T,Abs(λw.(g D(V ar(w)) σ)1) >, g >

The version of the partial evaluator that handles annotations is in figure 4.5.

Because the representation of expressions has changed, strategies such as Expand None will need

to be modified. Projecting the first element from the Result pair returns another pair consisting

of the annotation and the expression. Here is the modified Expand None

Σnone = λπ.(D ((π Σnone)1)2 none)2

52

P = λmns.(R λabc.(a (m a b c) (n a b c)) s F F)
R = λm.(m A B C)
C = λx.x
B = λngs.λx.(x n

λy.(y
λv.(g v s)
λabc.(b T λz.(g (D λabc.(c z)) s F T a b c))))

A = λmns.(s m n)
D = (Q Q)
Q = λqvs.λx.(x T

λy.(y
λq′w.(q′ q′ λabc.(a (v a b c) (w s F F a b c)) s)
λq′.v)

q)
T = λab.a
F = λab.b

Figure 4.5: Strategy-based partial evaluator, with annotations

Here is a strategy, Expand Marked, that uses these annotations:

Σmarked = λπ.

let r = π Σmarked

in if (r1)1 then r2 else (D ((t Σnone)1)2 Σnone)2

Similar to Expand Small, it first applies its argument π to itself to get r. But instead of checking

the size of r, it checks the annotation field. If the annotation field is true, then it returns the static

part of r; otherwise, it uses Expand None and D to residualize.

As an example, consider the expression from the previous section. With Expand Marked we

could annotate the first two abstractions to be reduced, and the final one to be residualized. Here

is the example again, with the abstractions marked for residualization underlined.

P (λa.(λb.(λc.c λr.(r r)) λx.x) λq.(q q)) Σmarked

= [[(λc.c λr.(r r))]]

This form of PEV can be used in a number of ways. If a binding time analyzer were employed

to annotate terms, our partial evaluator with the Expand Marked strategy would mimic an off-line

53

partial evaluator. We could also use the annotation to describe other things, such as indicating

which variable is an induction variable. Further, we could specify that the type of annotations

could be something other than boolean.

4.3.1 Expand Linear

One strategy that would be nice to have is Expand Linear, which causes an expansion to occur if

the operator is linear or constant—i.e., the variable it binds occurs one or zero times in the body

of the function. This could help reduce the effects of combinatorial explosion by disallowing the

kinds of function applications that would generate exponential behavior. Unfortunately, we cannot

write in λ-calculus a function which can test for linearity unless we can guarantee that there are

no free variables in the term. The reasons are the same as the the discussion of the size function

in section 4.1.

Another solution is to use Expand Marked as a form of Expand Linear. We use a preprocessor

to mark linear abstractions and then let Expand Marked do the work.

One note about all of these content-observing strategies is in order. While these strategies

would seem to work well in theory, there is a major limitation that makes them difficult to use in

practice. In order for the strategy to examine the structure of a term, it needs to extract the residual

portion of its PEV. This is not expensive to do once, but to do this for every sub-term causes the

algorithm to require an exponential time complexity—unless the results of these residualizations

can be shared somehow.

4.4 Booleans and Integers

The previous sections discussed expanding the representation of the terms to increase the power

of strategies. Another approach to this is to expand the language by adding simple types and

keywords. Both partial evaluators M and P have the effect of asking “what can we do if we have

control over β-reductions?”. But not all β reductions mean the same thing. For example, consider

the church numeral exponentiation: (C3 C3). This computation requires 16 β-reductions, all of

which are really “administrative” in that they are not meant to indicate an actual function, but

instead are there to preserve the format and representation of integer arithmetic. The computation

54

(C4 C4) requires 89 β-reductions.

Furthermore, unlike “real” function application, there is seldom a need to forbid the reduction

of such terms. If the opportunity exists to add two integers together, it is almost always desirable

to perform the addition. Unfortunately, these representational β-redexes look just like any other,

and so the strategies will have to process them as if they were general β-redexes. This could have

a strange effect in that, for example, arithmetic could be partially done. We could end up applying

(C4 C4) under Σn, where n is less than the 89 reductions needed. As a result, the exponentiation

will be stopped mid-way. This hardly seems like a meaningful or useful result.

Similarly, given the term (f λab.a), what do we say about f? It could be that f takes any

function and λab.a happened to be the one given; or that f is expecting a projection function; or

perhaps even that the input to f is supposed to be a boolean. In contrast, a term like (f true)

leaves no room for doubt, and the internals of f can be reduced accordingly.

4.4.1 Expanding the Representation

We added booleans, integers, the if keyword, and arithmetic operators to the language. The new

grammar is Λ = i | b | if Λ Λ Λ | x | (Λ Λ) | λx.Λ. We use prefix notation, because we want

parenthesis to be used only for application. The HOAS for the language also needs to be extended.

dMe = λ a b c cb ci ki kub kui kbb kbi. bMc

bxc = (c x)

bM Nc = a bt1c bt2c

bλ x . Mc = b (λ x . bMc)

bic = (ci i)

bbc = (cb b)

bif M N P c = (ki bMc bNc bP c)

b⊕c = (kub|ui|bb|bi ⊕)

The new variables cb and ci represent boolean and integer constants, respectively. The vari-

able ki represents if expressions. The variables kub and kui represent unary operations returning

booleans and integers, and kbb and kbi represent binary operations that return booleans and inte-

55

gers. The fact that operators work on constants makes it simple for the partial evaluator to decide

if the arguments are known or unknown, and whether it is able to call the operator or residualize

it. We need to know the output type and arity of the operators in order to represent any return

values correctly.

First we add expand Mogensen’s evaluator to handle the larger language. The combinators for

constants are straightforward, and are listed in figure 4.6.

CB = λb p.(p error λa b c cb ci ki kub kui kbb kbi.(cb b))
CI = λi p.(p error λa b c cb ci ki kub kui kbb kbi.(ci i))

Figure 4.6: Constant handling in M c

The PEV returned tells what happens in two cases: the first case is what to do if the user tries to

apply the value to something. This is a type error, and should “never happen”, so the free variable

error is returned. The second case is what happens if we don’t apply the term to anything, but

simply reduce it as much as we can right now. In this event we return the representation of the

constant.

The if keyword is more complex, and is handled by the KI combinator in figure 4.7. Unlike

the constants, it does make sense that the if expression could be applied to something.

KI = λc t e. (λr u. (c F λa b. r
λa. r
λa. r
u
λi. r
λc t e. r
λu. r
λu. r
λo. r
λo. r)

(D λa b cb ci ki kub kui kbb kbi.(ki (c F a b cb ci ki kub kui kbb kbi)
(t F a b cb ci ki kub kui kbb kbi)
(e F a b cb ci ki kub kui kbb kbi)))

λb.if b t e)

Figure 4.7: If handling in M

The first ten lines examine the conditional part of the if expression and see what kind of term

56

it is after partial evaluation. If it turns into a boolean, then the last line (which will be captured

by the u abstraction) captures the value of that boolean and uses it to return the appropriate

branch of the if expression. The return values t and e both have type PEV . If the condition turns

into anything other than a boolean, the remaining lines (captured by the r abstraction) call the D

combinator with a representation of the if expression, which also returns a PEV . Thus, we always

return a PEV , and the actual PEV returned will depend on whether or not the if expression

can be reduced. In keeping with the aggressive nature of M , the expression is always reduced if

possible.

Binary and unary operations are far more complex, for two reasons. First, there are three

common types for both the binary operations (int → int → int, int → int → bool, and bool →

bool → bool) and the unary operators (int → int, int → bool, and bool → bool). These types

must be maintained for proper functioning of the partial evaluator. Second, we have to treat the

operators as functions that can be passed to other functions if we want to be able to represent them

with HOAS. For example, (a (a (kbi +) x) y) would represent x+ y; the + is not activated here, it

is to be passed as an argument to kbi.

The solution, then, is to create four different combinators, given in figure 4.8, for each of the

combinations of arity (binary and unary) and output type (boolean and integer). These combinators

serve as a wrapper around the operators. This wrapper function turns the operator into a PEV .

This PEV needs to handle three cases. First, if we try to residualize this PEV , we should get

back the representation of the operator. If we apply something to it, the PEV needs to reduce

the argument and examine it. If the argument reduces to a constant—the second case—the PEV

feeds the constant to the operator, and represents the result with ci or cu, as appropriate. In the

third case, the argument reduces to something else, and the PEV residualizes the application of

the operator to the argument. The third case also applies if the argument is dynamic, which is why

we reintroduce the C combinator to this representation.

The case of binary operators is similar, except that the result of an application is represented

by kub or kui instead of cb or ci. Further, the call to D needs to be moved into the if expression,

since only one of the branches will return an expression; the kub and kui combinators will already

return PEV s.

57

If we can assume the type-correctness of the input program, we do not need to have separate

combinators based on the input to the function; we only need to keep track of the output. This

reduces the number of combinators we need, and also allows for the comparison operators to work

on both integers and booleans. We could simplify things further by using only one representation

of constants, but we would no longer be able to distinguish between booleans and integers.

KUB = λo p.
(p λz.(λzf .

(D if (isConst zf)
(getConst zf λv.

λa b c cb ci ki kub kui kbb kbi.(cb (o v)))
λa b c cb ci ki kub kui kbb kbi.(a (kub o) (zf a b c cb ci ki kub kui kbb kbi)))

(z F))
λabcbcikikubkuikbbkbi.(kub o))

KBB = λo p.
(p λz.(λzf .

(D if (isConst zf)
(getConst zf λv.(KUB (o v)))
λa b c cb ci ki kub kui kbb kbi.(a (kbb o) (zf a b c cb ci ki kub kui kbb kbi)))

(z F))
λa b cb ci ki kub kui kbb kbi.(kbb o))

KUI = λo p.
(p λz.(λzf .

if (isConst zf)
(getConst zf λv.

λa b c cb ci ki kub kui kbb kbi.(ci (o v)))
(Dλa b c cb ci ki kub kui kbb kbi.(a (kui o) (zf a b c cb ci ki kub kui kbb kbi)))

(z F))
λabcbcikikubkuikbbkbi.(kui o))

KBI = λo p.
(p λz.(λzf .

if (isConst zf)
(getConst zf λv.(KUI (o v)))
(Dλa b c cb ci ki kub kui kbb kbi.(a (kbi o) (zf a b c cb ci ki kub kui kbb kbi)))

(z F))
λa b cb ci ki kub kui kbb kbi.(kbi o))

Figure 4.8: Binary and unary operator combinators in Mc

The isConst and getConst functions are defined as utility functions in figure 4.9. The getConst

function takes a continuation.

The resulting partial evaluator, which we will call M c, is much larger than the original M , at

58

isConst = λi.(i λa b.false
λb.false
λb.true
λi.true
λc t e.false
λu x.false
λu x.false
λo x y.false
λo x y.false)

getConst = λi k.(i λa b.(k error)
λb.(k error)
λb.(k b)
λi.(k i)
λc t e.(k error)
λu x.(k error)
λu x.(k error)
λo x y.(k error)
λo x y.(k error))

Figure 4.9: is and get for constants

2567 nodes. The full code is in figures 4.20 and 4.21.

To determine the effect of these changes, we ran M and M c against two versions of the recursive

version of the exponential function. One used only Church numerals, the other used if and integers;

the exact code is given in figure 4.10. The isZero, times and dec functions are Church-numeral

based.

exp = (Y λe n x.(isZero n c1 (times x (e (dec n) x))))
expc = (Y λe n x.if (= n 0) 1 (∗ x (e (− n 1) x)))

Figure 4.10: Versions of the exponential function

For a baseline, we ran exp and expc against arguments ranging from 2 to 5. The results are in

figure 4.11.

exp

x \ y c2 c3 c4 c5
c2 86 93 102 113
c3 143 174 227 308
c4 219 334 599 1110
c5 326 717 1938 4919

expc

x 2 3 4 5

2 13 13 13 13
3 17 17 17 17
4 21 21 21 21
5 25 25 25 25

Figure 4.11: Exponential function running times

Next, we ran against three kinds of partial evaluation. First, we used M with the exp. Next,

we used M c with exp, to see the effect of adding the extra combinators to the representation. The

results are in figures 4.12 and 4.13. While both M and M c produce identical residual programs,

the cost of the new combinators is a 25% slowdown.

The payoff comes when we use the expanded language. The next test shows M c applied to

59

((M exp x) y)

cx\y size(M exp x) c2 c3 c4 c5
c2 599 12 19 28 39
c3 887 25 56 109 190
c4 1218 50 165 430 941
c5 1529 99 490 1711 4692

Figure 4.12: (M exp)

((M c exp x) y)

x/y size(M c exp x) ρ 2 3 4 5

2 808 0.74 12 19 28 39
3 1177 0.75 25 56 109 190
4 1596 0.76 50 165 430 941
5 2065 0.77 99 490 1711 4692

Figure 4.13: (M c exp)

expc. The results are in figure 4.14, with ρ values given to compare with both M and M c applied

to exp. As the complexity of the Church-numeral operations increase, we see better performance

from (M c expc), and eventually we are able to do even better than the smaller representation, as

the elimination of the Church-arithmetic overhead catches up to the addition of the extra repre-

sentational overhead. Further, for expc, the specialized versions are very efficient, only needing the

initial β-reduction.1

Size and Speedup β-reductions
x (M c expc x) ρ(M exp cx) ρ(M c exp cx) 2 3 4 5

2 719 0.83 1.12 1 1 1 1
3 983 0.90 1.20 1 1 1 1
4 1250 0.97 1.28 1 1 1 1
5 1517 1.05 1.36 1 1 1 1

Figure 4.14: (M c expc)

We are also able to perform the second projection withM c, but only for the simplest expressions

(like λx.x), and even then it is very slow. An experiment with the second projection of exponential

did not terminate after several days.

1Of course, the δ-reductions are not taken into account here. The point is that a δ-reduction is much cheaper than
a β-reduction.

60

4.4.2 Adding Strategies

The process of adding strategies to M c is similar to the process of adding strategies to M . As

mentioned before, strategies are only responsible for advising about β-reductions, so they will not

be consulted for these other operations, except when they are needed to turn PEV s into expressions.

They are simply discarded when passed into the constant representing combinators.

KUB = λo σ p.
(p λz.(λzf .

(D if (isConst zf)
(getConst zf λv.

λa b c cb ci ki kub kui kbb kbi.(cb (o v)))
λa b c cb ci ki kub kui kbb kbi.(a (kub o) (zf a b c cb ci ki kub kui kbb kbi)) σ)

(z σ F))
λabcbcikikubkuikbbkbi.(kub o))

KI = λc t e σ. (λr u. (c σ F λa b. r
λa. r
λa. r
u
λi. r
λc t e. r
λu. r
λu. r
λo. r
λo. r)

(D λa b cb ci ki kub kui kbb kbi.(ki (c σ F a b cb ci ki kub kui kbb kbi)
(t σ F a b cb ci ki kub kui kbb kbi)
(e σ F a b cb ci ki kub kui kbb kbi)) σ)

λb.(if b t e σ))

Figure 4.15: Sample of changes needed for P c

By adding conditionals and integer arithmetic to the language explicitly, we eliminate the need

to perform these functions via β-reduction. In figure 4.16, we see the result of P and P c running

on various programs. The arguments to P c are in typed form. Figure 4.15 shows the changes in

two of the combinators.

In figures 4.16, 4.17, and 4.18 we see the corresponding experiments to figures 4.12, 4.13 and 4.14.

The effect of moving to a larger language is much more striking. In the M c experiments, we needed

much more numerical computation to occur before the new representation paid off. In the P c

61

((P exp x) y)

cx\y size(P exp x) c2 c3 c4 c5
c2 1409 12 19 28 39
c3 2648 25 56 109 190
c4 4478 50 165 430 941
c5 7021 99 490 1711 4692

Figure 4.16: (P exp) with Σall

((P c exp x) y)

cx\y size(P c exp x) ρ 2 3 4 5

2 1629 0.86 12 19 28 39
3 2983 0.89 25 56 109 190
4 4967 0.90 50 165 430 941
5 7712 0.91 99 490 1711 4692

Figure 4.17: (P c exp) with Σall

Size and Speedup β-reductions
x (P c expc x) ρ(P exp cx) ρ(P c exp cx) 2 3 4 5

2 985 1.43 1.65 1 1 1 1
3 1477 1.79 2.02 1 1 1 1
4 2053 2.18 2.42 1 1 1 1
5 2710 2.60 2.85 1 1 1 1

Figure 4.18: (P c expc) with Σall

62

experiments, the new representation pays off immediately. This is to be expected, because the

strategy versions of the evaluator increase the expense of a β-reduction relative to the Mogensen

versions.

4.5 Strategies and η-Reduction

All of the strategies we have presented to this point have operated on PEV s by selecting one

component of the pair or the other, and then either applying or concatenating them. But there is

nothing intrinsic to strategies that restrict their operation to selecting and combining. In particular,

by making use of η expansion, we can achieve many of the benefits seen in other partial evaluators,

such as [7]. In fact, the η rule is one of many so-called binding-time improvements, a subject of

active research[27, 14, 8].

A good example of where η-expansion could be helpful is in terms like (λab.(f a b) A B) in

which we want to residualize the inner application to A but still perform the outer application to

B. Earlier we discussed the Expand N Then strategy, which would allow the application to B, but

at the cost of expanding the application to A, even if it did not meet the criteria we desired for

expansion. The Expand N Then strategy forces us to unfold an application that we would rather

have residualized.

For this example, what we really want is to take a term of the form (λab.(f a b) A B) and reduce

it to (λa.(f a B) A). Using the η-rule, we can build a strategy that will do this for us. Typically, a

strategy that residualizes an application (M N) does so by taking the HOAS representations of M

and N , and then building an application App(M,N) with them. Because the result is a represented

λ term, it cannot be evaluated any further unless we embed a partial evaluator in our strategies.

Instead of creating a completely residualized term, we could instead create a partially residual-

ized term in which the application to A was residualized, but then abstract over the call that would

have applied the result to B. This would look like λy.(App(Abs(x, ((M1 (D V ar(x)))1 y)2), X)).

The inner call to (M (D V ar(x)) “uses up” the inner abstraction, allowing access to the outer

abstraction. The y in this function should have type PEV , which gives this term the type

PEV → Exp. If we pair this term with an Exp, we have a new PEV .

Modifying the Σsmall,n strategy with this new form of residualization yields figure 4.19.

63

Σ2nd,n = λππ′.
let r = (π Σ2nd,n) in

let r′ = (π′ Σ2nd,n) in

if (size r′2) < n
then (r1 π

′)
else λs.(s

λy.App(Abs(λx.((r1 (D V ar(x)))1 y)), r
′
2)

App(r F, r′ F))

Figure 4.19: Expand Second

When we apply this to the example, we observe the following sequence:

(<< (λab.λf.(f a b) λq.(q q) λr.r) >> Σ2nd,3) ⇒

(Σ2nd,3 << (λab.λf.(f a b) λq.(q q)) >> << λr.r >> ⇒

(<< (λab.λf.(f a b) λq.(q q)) >> Σ2nd,3 << λr.r >> ⇒

((Σ2nd,3 << λab.λf.(f a b) >> << λq.(q q) >> << λr.r >> ⇒+

(λy.App(Abs(x, (<< λab.λf.(f a b) >> (D V ar(x)))), Abs(q,App(q, q))) << λr.r >>) ⇒

(λy.App(Abs(x, (<< λab.λf.(f a b) >> Σ2nd,3 (D V ar(x)) y)),

Abs(q,App(q, q))) << λr.r >>) ⇒+

App(Abs(x,Abs(f,App((<< (f (D V ar(x)) λr.r) >> Σ2nd,3), Abs(q, App(q, q)))))) ⇒+

App(Abs(x,Abs(f,App(App(App(V ar(f), V ar(x)), Abs(r, V ar(r))), Abs(q,App(q, q)))))) ⇒+

[[(λxf.(((f x) λr.r)) λq.(q q))]]

The effect of this strategy is to change one of the assumptions of the original evaluator: that

the applications are processed by selecting the function or textual versions of the function and its

argument. In this case, a new kind of function is produced that accomplishes a completely different

kind of computation. The use of η-expansion (the Abs(x, · · ·), in this case) is seen in many different

areas of partial evaluation, and it is perhaps not surprising to find that it is useful for this technique

as well.

This technique can be used in any strategy. The effect is to change the meaning of residualization

64

from an operation that freezes the current and future applications to an operation that only freezes

the current application, but lets future applications proceed. However, adding this technique to

the other strategies examined so far is not as interesting, as their decisions to residualize are made

more uniformly that this strategy.

4.6 Adding Contexts

One future direction to study is the capability to reduce terms like this one:

λx.(not (if x true false))

No matter what x is, we can move the not into the branches of the if expression. The current

representation makes that difficult, because to get to the subexpressions of the if you have to

residualize the expression first, which means the best you could do is output

λx.if x (not true) (not false)

The η trick used earlier does not seem to be applicable, because we are not content just to change

how not is applied, but we actually need to move it into the body of the if expression. PEV s don’t

have enough structure to allow for such movement, at least in their current form. One solution to

this is to change the type of PEV from Stragety → Result to Strategy → Continuation, where

continuations take results. This would allow the argument to a function to determine how it is

applied.

65

T := λab.a
F := λab.b
Q := λqms.λp.(p λq′v.(q′ q′ λabccbcikikubkuikbbkbi.

(a (m a b c cb ci ki kub kui kbb kbi)
(v s F a b c cb ci ki kub kui kbb kbi)) s)

λq′.m
q)

D := (Q Q)
A := λmns.(s m n)
B := λgsp.(p λx.(g x s)

λa b c cb ci ki kub kui kbb kbi.
(b λw.(g (D λabccbcikikubkuikbbkbi.(c w))
s F a b c cb ci ki kub kui kbb kbi)))

C := λx.x
CB := λbvsp.(pλe.eλabccbcikikubkuikbbkbi.(cb bv))
CI := λivsp.(pλe.eλabccbcikikubkuikbbkbi.(ci iv))
KI := λacondtes.(λaunfoldaresid.(acond s F λab.aresid λa.aresid λc.aresid

aunfold λi.aresid λcte.aresid λu.aresid λu.aresid λo.aresid λo.aresid)
λb.(if b t e s)
(D λabccbcikikubkuikbbkbi.(ki (acond s F a b c cb ci ki kub kui kbb kbi)

(t s F a b c cb ci ki kub kui kbb kbi)
(e s F a b c cb ci ki kub kui kbb kbi)) s))

pconst := λiv.(iv
λab.falseλb.false λc.false λb.true λi.true
λcte.false λu.false λu.false λo.false λo.false)

gconst := λivk.(iv λab.(k λe.e) λb.(k λe.e) λc.(k λe.e) λb.(k b) λi.(k i)
λcte.(k λe.e) λu.(k λe.e) λu.(k λe.e) λo.(k λe.e) λo.(k λe.e))

Figure 4.20: Source of PC , part 1

66

KUB := λosp.
(p λzz.(λzzf .

(D if(pconst zzf)
(gconst zzf λv.
λabccbcikikubkuikbbkbi.(cb (o v)))

λabccbcikikubkuikbbkbi.(a (kub o) (zzf a b c cb ci ki kub kui kbb kbi))
s)
(zz s F))
λabccbcikikubkuikbbkbi.(kub o))

KUI := λosp.
(p λzz.(λzzf .

(D if(pconst zzf)
(gconst zzf λv.
λabccbcikikubkuikbbkbi.(ci (o v)))

λabccbcikikubkuikbbkbi.(a (kui o) (zzf a b c cb ci ki kub kui kbb kbi))
s)
(zz s F))
λabcbcikikubkuikbbkbi.(kui o))

KBB := λosp.
(p λzz.(λzzf .
if (pconst zzf)

(gconst zzf λv.(KUB (o v) s))
(D λabccbcikikubkuikbbkbi.(a (kbb o) (zzf a b c cb ci ki kub kui kbb kbi) s)

(zz s F))
λabccbcikikubkuikbbkbi.(kbb o))

KBI := λosp.
(p λzz.(λzzf .
if (pconst zzf)

(gconst zzf λv.(KUI (o v) s))
(D λabccbcikikubkuikbbkbi.(a (kbi o) (zzf a b c cb ci ki kub kui kbb kbi)) s)

(zz s F))
λabccbcikikubkuikbbkbi.(kbi o))

R := λm.(m A B C CB CI KI KUB KUI KBB KBI);
P := λmns.(R λabccbcikikubkuikbbkbi.

(a (m a b c cb ci ki kub kui kbb kbi)
(n a b c cb ci ki kub kui kbb kbi))
s F)

Figure 4.21: Source of PC , part 2

67

Chapter 5

Concrete Syntax

We have shown in the previous chapters how strategies can add a level of control to an online

partial evaluator. While maintaining much of the simplicity of the underlying partial evaluator,

strategies themselves can be arbitrarily complex. Part of the expressive power comes from the

ability to compose strategies, so that we can choose the specific algorithms we want to use and

combine them.

This ability of strategies to be composed suggests a system where different kinds of functions

are composed to perform the partial evaluation. As we saw with the expand second strategy, we

can think of strategies as an implementation of the β-rule, where the role of the strategy is to

determine whether or not the β-rule should be performed, and to perform the appropriate code

transformation.

In a larger language, it is common to implement a reduction via a transformation from expres-

sions to expressions. In this chapter we explore what would happen if we implemented strategies

this way, manipulating a concrete syntax rather than relying on the underlying reducer to perform

reductions for us (such as β-reduction). This also gives us the opportunity to add other kinds of

reductions to the system.

These new strategies will be called transformers to emphasize their role. Each transformer

implements a reduction in the language. These transformers are then composed to make one

general transformer. By allowing transformers to annotate the expressions they process, these

transformers can communicate with each other and make use of statically determined information

such as binding-times and types.

To test this idea, we made a small implementation, written in OCaml. Our target language is

68

a small functional language, which has if, anonymous functions, arithmetic, and let. The grammar

for the language is in figure 5.1.

P ::= let v = E
E ::= fun v → E | (E E) | if E then E else E

| let v = E in E | c | E ⊕ E

where v represents variables, c represents constants, and ⊕ represents arithmetic operations. A
program is a series of definitions P .

Figure 5.1: Grammar for the target language

A transformer is a function which takes an expression as an input, and returns an expression as

its output. In this system, each transformer corresponds to and implements a code transformation

needed for reduction, normalization, or partial evaluation. The pattern these transformers will

follow is to examine an expression to see if the transformer knows how to process it. If so, the

transformer will apply its transformation and return the result. If not, the input expression is

returned unchanged. All the transformers in this section apply local transformations.

5.1 Reduction

We can use transformers to perform reduction operations. Each transformer will handle one rule

(or a few related rules) of the transition semantics for the language. For example, our language has

two if rules:

if true then x else y → x

if false then x else y → y

These can be represented by the following transformer Tif:

Tif(e) = match e with

| if true then x else y → x

| if false then x else y → y

The match/with syntax compares e to the two patterns, and returns the value of the right side

of the arrow. If no match is found, we return the original expression.

69

Addition is represented by the arithmetic transformer.

T+(e) = match e with

| i + j → i+ j,when i and j are integers

The T+ transformer only operates on addition operations, when both of the arguments are

integers. Additions where one or both of the arguments are expressions are ignored. We can add

optimizations to the transformer by having it watch for special cases, such as when one of the

arguments is a zero.

T+(e) = match e with

| i + j → i+ j,when i and j are integers

| 0 + e′ → e′

| e′ + 0 → e′

Similar transformers are defined for function application and let.

Tlet(e) = match e with

| let v = e′ in e′′ → [e′/v]e′′

Where [e′/v]e′′ is substitution of e′ for v in e′′, defined in the usual, variable hygienic way.

5.2 Composition

To use these transformers to perform interpretation, we take two steps. First, we compose the local

transforms to create a single interpreter transformer Tint:

Tint = T+ ◦ Tif ◦ · · · ◦ Tlet

Next, we need a function I that performs a recursive descent over input terms, using the fix-point

70

of Tint.

I(e) = match fix Tint(e) with

| (fun x → e′) → e

| e1 then e2 else e3 →

Tint(if I(e1) then I(e2) else I(e3))

| let v = e1 in e2 → Tint(let v = I(e1) in I(e2))

| e1 ⊕ e2 → Tint(I(e1) ⊕ I(e2))

| e1 e2 → match I(e1) with

| (fun x → e′) → [e2/x]e′

| e′1 → e′1 I(e2)

| c → c

We can think of I as a kind of transformer, parameterized over transformer Tint.

5.3 Normalization

To perform normalization, we need to create a transformer that will descend into a function’s

body. To prevent variable name capture, we need to rename the variable before descending. The

normalization function N is parameterized over I, which is meant to be an interpreter of the kind

described above.

N(I, e) = match I(e) with

| (fun x → e′) → (fun x∗ → N([x∗/x]e′))

| if e1 then e2 else e3 →

Tint(if N(e1) then N(e2) else N(e3))

| let v = e1 in e2 → Tint(let v = N(e1) in N(e2))

| e1 ⊕ e2 → Tint(N(e1) ⊕ N(e2))

| c → c

71

5.4 Partial Evaluation

Specialization of an expression can produce the same result as normalization, but we often want to

stop short of normalization. In order to limit the actions of the normalizer, we introduce staging

annotations. Following convention, we will use overline to represent the compile-time stage, and

underline to represent the runtime stage. The normalizer and interpreter functions then will be

modified to rewrite terms only when they are in the compile-time stage.

5.4.1 Binding Time Information

There are two ways we can make use of binding time analysis in our partial evaluator. The first way

is to have the binding time analyzer output two-level code, marking the dynamic code as runtime.

This will cause the partial evaluator to reduce only the code marked as static, much as a standard

offline partial evaluator.

The second way is to introduce binding-time annotations to the expressions. To implement

offline partial evaluation, we have a transformer check the annotations. If the annotation indicates

that the expression is dynamic, the code’s staging level is raised to runtime.

Tbta(e) = match e with

| (fund x → e′) → (fun x→ e′)

| ifd e1 then e2 else e3 →

if N(e1) then N(e2) else N(e3)

| letd v = e1 ind e2 → let v = e1 in e2

| e1 ⊕d e2 → e1 ⊕ e2

The order in which the transformers are composed is significant. Any transformers that come

before Tbta will ignore binding-time annotations. The transformers coming afterward will be forced

to use them, unless they ignore the staging levels. This allows us the possibility of making partial

evaluators that use a hybrid of online and offline methods.

72

5.4.2 Heuristics

If a statically known function is applied to a dynamic conditional with static branches, we can

often create more opportunities for specialization by moving the function into the branches. For

example:

let f x = x + 10 in

f (if y then 10 else 20)

can be rewritten as

let f x = x + 10 in

if y then f(10) else f(20)

and finally reduced to

if y then 20 else 30

This heuristic can be implemented as follows:

Tdycon(e) = match e with

| e1 (if e2 then e3 else e4) →

if e2 then e1 e3 else e1 e4

There would be similar cases for operators, and match/with (if the language had them). This

transformer corresponds to the static application “code motion” rule of [9].

5.4.3 Bounded Static Variation

A more complex version of this makes use of the knowledge gained by taking a branch, and is

commonly known as “The Trick”[17, 9]. If the conditional is simply a variable, then the value of

the variable will be known in the branches, even if it is marked dynamic.

Ttrick(e) = match e with

| e1 (if x then e3 else e4) →

if x then e1([true/x]e3) else e1([false/x]e4)

73

5.5 Global Transformations

Local transformations require access only to the immediate expression being processed. Transfor-

mations like function unrolling and specialization require access to the program source.

5.5.1 Function Inlining

If the transformers are allowed read access to the source of the program, we can perform function

inlining.

Tinline(f, e) = match e with

| f e → [body(f)/arg(f)]e

5.5.2 Specialization

If transformers are allowed write access to the source of the program, then we can perform special-

ization.

For example, if we wanted to specialize the two-argument function g with respect to its first

argument if the argument is a constant, we could use the transformer:

Tspecialize(g, e) = match e with

| g c e′ → set body(gc) = [c/var1(g)]body(gc);

set var1(gc) = var2(gc);

set arity(gc) = 1;

gc e
′

This is presented here in an imperative style for brevity. In a functional style we would use

standard “plumbing” techniques to thread the source of the program.

We can also write transformers that force the residualization of certain functions, and even work

on functions that we anticipate being created.

74

5.6 Usage

The compositional framework allows us to write this as a list of instructions to the evaluator. For

example, if we wanted to specialize g with respect to the second argument, unfold f , and residualize

calls to h, the code for the evaluator would look like:

pe (Tint o Tspecializeg,2
o Tunfoldf

o Tresidualizeh
)

In our implementation, each transformer registers itself with a central registry, and reports to

it each time it takes an action. When the evaluator is done, it prints a summary of how many

times each transformer was used. This is useful for understanding which transformers are having

an effect.

5.7 Conclusions and Related Work

Transformers are a related to strategies in that they provide an implementation for particular

reductions in the system. Rather than using the underlying reducer to perform the reduction,

transformers manipulate an abstract syntax tree. We can build new transformers by composing

transformers we have already written, in the same way that we can build new strategies by com-

posing old ones. Composing transformers has the the effect of pipelining the transformations.

This idea is similar to DyC[13], and the Staged Compilation Framework (SCF)[25] developed at

the University of Washington. In their framwork a pipeline of transformations is used to perform

stages of a partially evaluating compiler, targeted toward the C language. The SCF stages are

more coarse-grained than the transformers of this chapter, in that they process entire expression

trees rather than individual nodes. Further, these stages are meant to be run once each, while

transformers potentially run multiple times over the same nodes.

75

Chapter 6

The λ-Calculus Reducer

During these tests, the third projection was very difficult to achieve. The combinatorial nature

of the problem, and the fact that the strategy version of the evaluator is only slightly larger

than Mogensen’s, lead to the question: what if non-termination is caused by inefficiencies in the

underlying reducer?

The main cause for this concern is the fact that our λ-calculus reducer uses a graph-based

representation of the λ-terms. An expression e is represented as shared information when two

or more other expressions have pointers to it. The advantage of this representation is clear: if

two expressions M and N share a subexpression e, then if M causes e to be evaluated, N is

able to use the result of that evaluation for free. But, part of the β-reduction algorithm involves

copying elements of the graph. This can cause problems in that, for example, if M is copied to

another expression M ′, it is possible that the subexpression e will also be copied, resulting in the

computation being done twice.

In this chapter we discuss the reducer and the optimizations made to it. In section 6.1 we

discuss the design of Peyton-Jones’ interpreter[23], which was the starting point for our reducer.

In section 6.2 we discuss how we modified the interpreter to make it a reducer and the efficiency

gains we were able to realize.

6.1 Standard λ Interpretation

We used [23] as a starting point. It is an interpreter for a lazy λ-calculus. Rather than using an

environment, closures, and thunks, this interpreter represents λ-terms completely using an abstract

76

syntax graph, which makes explicit the computations that are shared.

The key computational step in λ-calculus is β-reduction, which is the λ-calculus implementation

of a function call. In β-reduction, a redex (reducible expression) consisting of an abstraction applied

to an argument is rewritten. The argument is substituted into the body of the abstraction wherever

the variable bound by the abstraction appears. An example of a β-reduction is in figure 6.1. The

argument (λq.q λr.r) is substituted for x.

@

λx

@

x x

@

λq

q

λr

r

⇒ @

@

λq

q

λr

r

@

λq

q

λr

r

Figure 6.1: Simple β-reduction, using trees

From the figure we can also see why graphs are used instead of trees: the (λq.q λr.r) computation

has been duplicated, and will now be performed twice. Figure 6.2 shows the same computation

using graphs instead of trees. The idea of using pointers to share computations goes back to

1971[31].

@

@

λq

q

λr

r

Figure 6.2: Simple β-reduction, using graphs

Once we start using a graph, it becomes important that we do not destructively update the

function when performing a substitution, because it may be shared by other applications. For

example, if the λx.(x x) in the figure were applied to a different argument at some other point, we

would get an incorrect result if we simply replaced the occurrences of x with pointers to (λq.q λr.r).

Instead, we need to make a copy of the function, substituting the argument for the variable as we

go.

77

6.1.1 Instantiation

This process of copying the function is called instantiation, which is discussed in chapter 12 of [23].

The instantiation algorithm implements substitution in the context of a graph representation of an

expression.

The algorithm has three inputs: a reference to the body of the function being applied, the name

of the variable being substituted, and a reference to the argument of the function. The instantiation

algorithm then needs to do three things. First, it needs to create a copy of the body of the function

that has just been applied. Again, we cannot simply update the body in place because this function

may be shared by other parts of the graph; to do so would cause subsequent applications to be

performed incorrectly. Second, it needs to replace the bound variables by references to the argument

to which the function was applied. By referring to the parameter instead of making copies, the

results of reducing the argument are made available to the other parts of the graph that use it.

This is a standard call-by-need implementation of graph-based λ-calculus interpreters. Finally, the

algorithm needs to replace the application node that was just reduced with the result; this also

turns out to require some subtlety.

@

λx

λf

@

@

f x

x

λz

z

⇒

λx

λf

@

@

f x

x

λf

@

@

f λz

z

Figure 6.3: Instantiation

Figure 6.3 illustrates a β-reduction. The function λxf.((f x) x) is applies to λz.z. The result is

λf.((f λz.z) λz.z). As can be seen in the graph, the λz.z is shared. The original function is still in

memory, disconnected from this computation. It is kept in case it is applied in some other context.

The dotted line represents that the application node has been overwritten by the λf abstraction.

78

6.1.2 Indirection Nodes

When an instantiation occurs, we need to replace the application node with the result node to make

the result available to the rest of the computation. But this must be done with some care, because

it is easy to lose many opportunities for sharing. In figure 6.3 the result of the instantiation was an

abstraction. But suppose instead that the result of the function application was to return another

application node that was shared by some other expression, as in figure 6.4.

@

λx

x

@

M N

⇒ @

λx

x

Figure 6.4: Instantiation with inappropriate copying

We can see that there are now two nodes that will cause an application of (M N); one was the

argument to the function, and the other is the new root of the expression after the β-reduction is

complete. If there is a link to the original application node in some other part of the expression,

then it is possible for (M N) to be performed twice.

The solution is to introduce a new kind of node, called an indirection node. It is emitted when-

ever the result of a function call is an application node that was not generated by the instantiation

itself. This indirection node acts as a reference, and allows the computation to be shared. This

precaution must also be taken whenever a computation-producing node (such as if) is returned

from a function. Figure 6.5 gives the same example as figure 6.4 using indirection nodes.

@

λx

x

@

M N

⇒ 5

λx

x

Figure 6.5: Instantiation with an indirection node

79

6.1.3 Improving the Instantiation Algorithm

Aggressive Sharing

The instantiation routine given in [23] specifies that all parts of the function being instantiated

should be copied. This is not what we want, however. Every time an application node is copied,

there is the risk that a computation will now be duplicated unless it is certain that no other links

to the application node exist. So it is important that the instantiation routine copy as little of

the function body as possible. Instead, using techniques similar to those published by Okasaki

[21, 22], terms from the original function should be shared, so that any results of computations

performed inside the function body are shared. Figure 6.6 shows a function body that contains

a sub-term (λq.q λz.z). This sub-term does not depend on the argument passed to the function,

which means that this computation could be shared among all the calls made by this function. In

the example, the function is applied twice, once to M , and later to N . The figure shows what

happens in the first application: the body of the function is instantiated, and the (λq.q λz.z) part

is shared with the original function. The node of the original application to M is overwritten by

the result ((λq.q λz.z) M). The next step reduces (λq.q λz.z) to λz.z. Both the currently active

version of the function and the future application of this function to N are able to benefit from

this computation. Had we copied everything in the function body, the term (λq.q λz.z) would have

been reduced twice.

@

@

λx

@

@

λq

q

λz

z

x

N

M

⇒ @

@

λx

@

@

λq

q

λz

z

x

N

M

⇒ @

@

λx

@

λz

z

x

N

M

⇒ M

@

λx

@

λz

z

x

N

Figure 6.6: Sharing across function calls

80

One might argue that the function should not have been written with an instance of (λq.q λz.z)

in it, but this is not always under our control. The (λq.q λz.z) could have been placed there by yet

another function call occurring earlier in the computation. Since we do not evaluate the arguments

of functions before substituting, we must assume that this kind of situation will occur.

Fortunately, it is fairly easy to tell which parts of the term should be shared. When instantiating

a node that has sub-nodes, we first instantiate the child nodes, and then check the results. If they

are returned back to us unchanged (which we can tell because they will have the same memory

location as the original arguments) then there is no need to recreate the node, we simply return

the one that was given to us. For example, if we instantiate an application node (M N), we first

need to instantiate M and N . Supposing we save the results in variables M ′ and N ′, we check to

see if M==M ′ and N==N ′, where == denotes memory equality. If both equalities hold, we return

the original application node; otherwise we create a new application node (M ′ N ′) and return it

instead.

Caching

A second optimization is suggested by noticing that if a node is reachable by n > 1 paths in the

body of an abstraction before instantiation, then the corresponding n paths in the body of the

result should also all reach the same corresponding node. An example of this is given in figure 6.7.

The variable x will be instantiated and the traversal into M will be performed twice, once for each

branch of the application above it. Because of the aggressive sharing optimization outlined above,

this will not result in a loss of sharing, but we still have to process all the nodes in M (at least)

twice.

To solve this problem we added an annotation field to the nodes to keep track of the results

of previous traversals. When the instantiation function reaches a node, it first checks to see if the

node had been checked before. If so, it simply returns the result from last time. Otherwise, it puts

a copy of the result into the annotation field of the node for future reference, before returning it

to the caller. Of course, it is very important to reset these annotations after the instantiation is

finished, or else future instantiations will produce inaccurate results.

To see the effect of these changes, we ran some of our experiments with both the old and the

81

λx

λy

@

λz

@

M

x

Figure 6.7: Sharing in an instantiated abstraction

new versions of the instantiation function. The results are in figure 6.8. For applications of the

partial evaluators, we saw speedups in the range of 5–11%.

Experiment Old β New β Speedup

M Ack C2 532 492 8.1%
M Ack C3 1080 971 11.2%
P Ack C2 Σall 746 709 5.2%
P Ack C3 Σall 1506 1401 7.5%

Figure 6.8: Comparison of instantiation methods

6.2 From Interpretation to Reduction

The algorithm described above is meant for reducing λ-terms to weak head normal form, hereafter

WHNF. A term is in WHNF if the term is an abstraction or a variable; or if the term is an application

whose function argument is neither an abstraction, nor an application that can be reduced to an

abstraction. Figure 6.9 shows four examples of terms in WHNF. The first and second are in WHNF

because they are abstractions, and the third and fourth are in WHNF because the function side of

the root-level application is not an abstraction, and cannot be reduced to an abstraction.

The functionsW and B describe the algorithm to convert a term to WHNF: The B (for “beta”)

function checks to see if an application can be β-reduced or not. As is standard in a lazy language,

arguments to functions are not evaluated until they are used.

82

λx

@

x x

λx

@

λy

y

x

@

z λx

@

λy

y

x

@

@

z z

λx

@

λy

y

x

Figure 6.9: Terms in weak head normal form

W[[x]] ⇒ x

W[[λx.M]] ⇒ λx.M

W[[M@N]] ⇒ B[[W[[M]]@N]]

B[[(λx.M)@N]] ⇒ W[[M [N/x]]]

B[[M]] ⇒ M

6.2.1 Normalization

The terms output by our partial evaluators are represented in HOAS, in which almost all of the

structure of the term exists underneath a λ. This means that WHNF will not reduce the terms

completely enough to be useful, especially if we want to view the results of our computations.

Therefore, we reduce to normal form (NF). A term is in normal form if it is in WHNF and its child

nodes are in normal form.

In figure 6.9, the first term is in normal form, but not the following terms. Figure 6.10 shows

the result if the reduction to normal form is completed.

λx

@

x x

λx

x

@

z λx

x

@

@

z z

λx

x

Figure 6.10: Terms in Normal Form

83

The function N defines the reduction to normal form. It makes use of W, defined above. To

reduce a term to normal form, first reduce it to weak head normal form, and then reduce the

children to normal form.

N [[M]] ⇒ N ′[[W[[M]]]]

N ′[[x]] ⇒ x

N ′[[λx.M]] ⇒ λx.N [[M]]

N ′[[M@N]] ⇒ N [[M]]@N [[N]]

6.2.2 α-Capture

The normalization algorithm, as given, suffers from α-capture. An α-capture occurs when a variable

bound by a certain abstraction later becomes bound by a different abstraction. It also occurs when

a variable that is free at one point of the computation becomes bound at a later point of the

computation. This represents an incorrect change in the meaning of the variable. This can be

especially surprising to a programmer because if the variable is given a different name the capture

will not occur.

When reducing to WHNF it is sufficient to be sure that each λ-abstraction binds a uniquely

named variable, and that all variables are bound—at that point, no reductions will cause α-capture.

This is because a capture occurs when a variable that is free in the body of an application is

substituted underneath a λ of the same name. For such a substitution to occur, the variable would

either have to be free at the start (contradicting our assumption that all variables are bound) or

it would have to be bound by an abstraction further up the graph (contradicting the assumption

that we are reducing to WHNF—such reductions do not go underneath λs).

When reducing to normal form this condition is not strong enough. Figure 6.11 shows an

example of this. The variables x and w are bound twice each. The last tree shows what happens

when we reduce to normal form—the two variables x at the leaves of the term are bound by different

abstractions, but there is no way to discover that by examining the graph.

84

@

λw

λx

@

w x

λw

λx

@

w x

⇒ λx

@

λw

λx

@

w x

x

⇒ λx

λx

@

x x

Figure 6.11: Example of α-capture

While the situation in figure 6.11 could be avoided by giving different names to the variables,

figure 6.12 illustrates a condition where unique variable naming is not enough. Even if all the

bindings start out with unique names, the computation could cause an arbitrary number of copies

to be made by means of terms like λq.(q q).

α-capture becomes a problem when, during normalization, an abstraction is be instantiated

with a variable that is free in the body of the abstraction being instantiated. Such a free variable

could be placed deep into the body of the function, below a subexpression containing an abstraction

of the same name, thus causing capture.

@

λq

@

q

λw

λx

@

w x

⇒ @

λw

λx

@

w x

Figure 6.12: Second example of α-capture

The solution turns out to be fairly simple, and is illustrated in figure 6.13. After reducing a term

to WHNF, the next step in the normalization process is to descend into the body of the resulting

abstraction. It is at this point that the variable bound by the abstraction (descent variable) becomes

free and is in danger of being captured. If it is found that a potentially capturing abstraction exists

85

in the remainder of the term, then we rename the descent variable. If no such capturing abstraction

exists, or if the descent variable does not occur free in the remainder of the term, we can proceed

with the reduction without making any changes. (This is the case in figure 6.15.)

@

λw

λx

@

w x

λw

λx

@

w x

⇒ λx

@

λw

λx

@

w x

x

⇒ λx′

@

λw

λx

@

w x

x′

⇒ λx′

λx

@

x′ x

Figure 6.13: Example of α-capture being avoided

The potential for optimization comes in deciding whether or not the descent variable could

be captured. In certain cases, such as when the descent variable does not occur, or there are no

abstractions in the remainder of the term that bind the same variable, we can say that capture is

impossible. The tradeoff tends to be this: that increased optimality reduces the total number of

β-reductions performed, while increasing the expense of each reduction. In our implementation,

we in fact do not do any checking; we simply rename the abstraction, and instantiate the sub-term

with the same instantiation function as before. If none of the variables in the body are bound to

that abstraction, then the function will simply reuse the term as-is, and not copy anything.

6.3 Ideal Abstractions

This technique of renaming the variable as we descend into the term brings up some interesting

questions. In order to distinguish the variables, we need to rewrite the variable names somehow.

The näive way is to rewrite the text of the variable name (e.g., x may become x′ after copying), but

this quickly becomes cumbersome during long computations, and may make it difficult to read back

the results. One technique widely used is to represent variables with pointers to their binders[2, 3].

This allows the textual representation to be less cluttered, while still preserving the uniqueness of

the variables.

86

It turns out that by generalizing this technique, we are able to save memory and reduce the

number of β-reductions needed to reduce a term. A λ-calculus expression is represented as a graph

which in turn represents a tree with explicit sharing of memory. When the instantiation function

is called, the effect is similar to any functional update of a tree-like data-structure. Whatever is on

the path between the root node of the function being instantiated and the variables being replaced

needs to be copied. In particular, we will need to copy of any abstractions that are on this path.

In figure 6.14, we see a similar function call as in figure 6.6. This time, there is a λw along the

path between the root and the substitution variable x. As a result, the λw is copied, which has a

detrimental effect: since variables must refer to their binders, the w must be copied also, along with

everything between it and the root. It is not hard to make an example where a cascade of copying

results from this kind of situation. In figure 6.6, the result is that the computation (λz.(z w) λq.q)

is performed twice, even though it has nothing to do with x.

The problem is that having variables refer to their binders is too specific. Examining the two

occurrences of λw in the example, we can argue that they are, in some sense, really the same

abstraction. Further, notice that there is no possibility that one variable w will be passed into the

other variable’s abstraction. This situation occurs when abstractions are copied. What we want,

then, is to be able to keep track of these related abstractions. Our solution is to represent an

abstraction using a pointer to an Ideal Abstraction, which is external to the graph. Variables will

also point to the ideal abstraction, rather than the abstraction in the graph. (We sometimes call

these abstractions Shadow Abstractions, á la Plato[6]). The effect will be that if we have to copy

a shadow abstraction, the copy will point to the same ideal abstraction as the original, as will the

variable bound by it. Thus, the variable can be considered unchanged, and can be shared instead

of copied.

In figure 6.15 we see an example of this. This is the second term from figure 6.14, with the

variable bindings to their abstractions denoted with a dotted arrow. Alongside of it is the same

term after a reduction using ideal abstractions. Though the λw is still copied, we are still able to

share the variable w. This in turn means we don’t have to copy the (λz.(z w) λq.q) term, so it will

only be reduced once.

87

@

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

M

⇒

λw

@

@

λz

@

z w

M

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

⇒

λw

@

@

w

M

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

⇒

λw

@

w M

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

Figure 6.14: Variable renaming difficulty

88

λw

@

@

λz

@

z w

M

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

λz λw λx λq

λw

@

M

@

λx

λw

@

@

λz

@

z w

λq

q

x

N

Figure 6.15: Term without and with ideal abstractions

λq λx λw

@

λq

@

q

λw

λx

@

w x

⇒ λq λx λw

@

λw

λx

@

w x

⇒ λq λx λw

λx

@

λw

λx

@

w x

x

⇒ λq λx λw λx2

λx

@

λw

λx

@

w x

x

Figure 6.16: Figure 6.12 with ideal abstractions and renaming

89

6.4 Future Work

The results of this work were encouraging. Mogensen’s reducer required 268,481 β-reductions to

compute the third projection of M . Using our reducer, we could perform the same computation in

only 232,621 reductions, a 13% improvement. Results like this are, of course, highly dependent on

the particularities of the code being reduced. This reduction was not enough to make a significant

improvement in our ability to perform the third projection. We stopped work on this front when

we were able to determine that classic combinatorial explosion was the cause of non-termination

for the third projection of P .

An optimal reducer, the Bologna Higher Order Machine (BHOM), has been found [3]. Never-

theless, we feel that there could still be benefit in increasing the power of this system. The BHOM

reducer is optimal in the number of β-reductions, but to accomplish that many other kinds of nodes

and reductions had to be introduced into the representation. We did not test our reducer alongside

BHOM since the downloadable version only reduces to WHNF, and we had already discovered the

cause of the third projection’s non-termination. However, it would be interesting to know what the

tradeoffs are between the relative simplicity of our reducer and the β-optimality of BHOM. It may

be that the software metric that really matters—wall-clock time—does not favor one reducer over

the other in all cases.

One of the optimizations that we could make is to find heuristics for determining when an

abstraction will capture a free variable. If we could know that a variable would always be safe from

capture, we would not have to rename it upon descending underneath its binding abstraction.

Another optimization is to mark trees that have no redexes in them. To find the next redex

to reduce, the reducer must start at the root of the tree and use a kind of depth-first search. It

is possible to check the same expression multiple times, due to a complicated initial expression, or

because a term already in normal form is passed into a function. The search time could be reduced

by remembering the result of previous searches.

90

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have presented a method of controlling an on-line partial evaluator by means of a strategy,

an extra parameter consisting of a function that acts as an advisor to the underlying partial

evaluator. A strategy processes an application node by performing two operations. First, it selects

a (potentially different) strategy to pass to the subterms, causing them to be evaluated to some

degree. Second, it decides how β-reduction should be performed on that node. By introducing

strategies into Mogensen’s partial evaluator, we were able to control the degree to which the target

programs were normalized.

The expressive power of strategies comes from the fact that they select the strategy to be used

in processing a sub-term. This ability to compose strategies allows us to describe their behavior

in terms of the actions taken on the tree as a whole (e.g., “expand the first n levels”). By using

η-expansion, we are also able to write strategies such as Expand Second, which specializes a function

with respect to its second argument, but not its first. A different use of η-expansion allowed us

to write Expand Breadth n, which works by selectively telling nodes to ignore strategies given to

them.

We have also shown that it is possible to use strategies in a larger language. One technique

involved adding new kinds of terms to the language (e.g., arithmetic, if), which are not processed

by strategies, but instead are handled by the underlying evaluator. The second technique, shown

in chapter 5, was to expand the role of strategies to that of transformers. In addition to handling

β-reduction, transformers are responsible for the other kinds of reductions.

91

Strategies have several limitations to their expressive ability. One limitation is that strategies

are only consulted at application nodes. An abstraction node will simply pass its strategy into the

sub-term. As a result, we cannot use strategies in their current form to express a computation that

involves recognizing an abstraction node. An example would be a hypothetical WHNF strategy,

which instructs the partial evaluator to reduce its term to WHNF. To reduce to WHNF it is

necessary for a strategy to stop reducing once it has been passed below an abstraction, but currently

there is no mechanism to communicate that information to the strategy. A second limitation

involves the structure of a PEV . In order to examine the contents of a node in concrete form, it is

necessary first to reduce it to a residual form, making that particular computation more expensive.

Another limitation we encountered occurs during self-application of the partial evaluator, due

to the combinatorial explosion characteristic of the loss of binding-time information. While the

Mogensen evaluator was small enough that the combinatorial explosion was manageable, the addi-

tional code required to enable the use of strategies made our partial evaluator too large for a third

projection using the more aggressive strategies.

In addition to the work on strategies, we have presented a λ-calculus normalizer that, while

not optimal in the number of β-reductions needed to normalize a term, is very aggressive taking

opportunities to share the results of computations. To build this normalizer, we made two major

improvements. First, we improved the efficiency of the standard instantiation algorithm by enabling

it to detect which parts of the expression were not changed by the instantiation. This allowed more

subexpressions to be shared than in the standard algorithm. Second, we changed the representation

of abstraction nodes to allow them to be copied without automatically requiring the body of the

abstraction to be copied as well. These changes gave us a 13% speedup over the reducer used in

Mogensen’s experiments.

7.2 Future Work

7.2.1 Strategies

One question raised by strategies is how they can be used in larger languages than λ-calculus.

Chapter 5 details one possible answer, having strategies process abstract syntax trees directly.

92

More work can be done to understand the interactions between the different transformers during

partial evaluation. Furthermore, the effect of partially evaluating the transformers themselves has

not been explored.

Another area for future work involves the use of strategies in other domains, such as recursive

descent algorithms. For example, a strategy-based search algorithm might be able to use a fast

evaluation strategy to select a candidate subtree, and then switch to a slower but more precise

strategy to make the final selection. The ability to compose strategies would allow us to build a

new strategy quickly out of strategies we already have.

7.2.2 Reducer

There are several areas to add optimizations to the reducer. One of the optimizations that we

could make is to find heuristics for determining when an abstraction will capture a free variable. If

we could know that a variable would always be safe from capture, we would not have to rename it

upon descending underneath its binding abstraction.

Another optimization is to mark trees that have no redexes in them. To find the next redex

to reduce, the reducer must start at the root of the tree and use a kind of depth-first search. It

is possible to check the same expression multiple times, due to a complicated initial expression, or

because a term already in normal form is passed into a function. The search time could be reduced

by remembering the result of previous searches.

We would also like to know the tradeoffs between our techniques and the ones used in the BHOM

interpreter. One question is how much the increased cost of performing a β-reduction offsets the

gains made by needing fewer β-reductions.

93

References

[1] et al Abelson. Revised5 report on the algorithmic language scheme. Higher-Order and Symbolic

Computation, 11(1):7–105, August 1998.

[2] Luigia Aiello and Gianfranco Prini. An efficient interpret for the lambda calculus. Journal of

Computer and System Sciences, 23:383–424, 1981.

[3] Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Program-

ming Languages, volume 45 of Cambridge Tracts in Theoretical Computer Science. Cambidge,

1998.

[4] H. P. Barendgregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland, 1984.

[5] Mattox Beckman and Samuel N. Kamin. Controlled self-applicable on-line partial evaluation,

using strategies. In International Conference on Computer Languages, pages 143–152, 1998.

[6] Allan Bloom. The Republic of Plato, chapter 7. Basic Books, 1986.

[7] Olivier Danvy. Type directed partial evaluation. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT symposium on Principles of Programming Languages, pages 242–257, 1996.

[8] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. The essence of eta-expansion in partial

evaluation. Lisp and Symbolic Computation, 8(3):209–227, 1995.

[9] Olivier Danvy, Karoline Malmkjr, and Jens Palsberg. Eta-expansion does the trick. Technical

Report RS-95-41, 1995.

[10] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, Inc, 1972.

94

[11] Y. Futamura. Partial evauation of computation process—an approach to a compiler-compiler.

Systems, Computers, Controls, 2(5):45–50, 1971.

[12] Robert Glück. Towards multiple self-application. In ACM SIGPLAN Symposium on Par-

tial Evaluation and Semantics-Based Program Manipulation 1991, pages 309–320. ACM SIG-

PLAN, 1991.

[13] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eggers. An evaluation of staged,

run-time optimizations in dyc. In Conference on Programming Language Design and Imple-

mentation, pages 293–304, 1999.

[14] John Hatcliff and Olivier Danvy. A computational formalization for partial evaluation. Math-

ematical Structures in Computer Science, 7(5):507–541, 1997.

[15] N.D. Jones, P. Sestoft, and H. Sondergaard. An experiment in partial evaluation: The gen-

eration of a compiler generator. In Jean-Pierre Jouannaud, editor, Rewriting Techniques and

Applications, volume 202 of Lecture Notes in Computer Science, pages 141–157. Springer-

Verlag, May 1985.

[16] Neil D. Jones. Mix ten years later. In ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation 1995, pages 24–38, 1995.

[17] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice Hall, 1993.

[18] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. Journal of Functional

Programming, 2(3):345–363, 1992.

[19] Torben Æ. Mogensen. Self-applicable online partial evaluation of the pure lambda calculus.

In Proceedings of the ACM SIGPLAN Symposium on Partial evaluation and semantics-based

program manipulation, pages 39–44. ACM Press, 1995.

[20] F. Nielson and H.R. Nielson. Two Level Functional Languages. Cambridge University Press,

1992.

95

[21] Chris Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional

Programming, 5(4):583–592, 1995.

[22] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[23] Simon L. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice

Hall, 1987.

[24] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings of the ACM-SIGPLAN

Conference on Programming Language Design and Implementation, pages 199–208. ACM

Press, 1988.

[25] Matthai Philipose, Craig Chambers, and Susan J. Eggers. Towards automatic construction of

staged compilers. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Princi-

ples of programming languages, pages 113–125. ACM Press, 2002.

[26] Eric Ruf. Topics in online partial evaluation. Technical Report CSL-TR-93-563, Stanford

University, March 1993.

[27] Colin Runciman. Binding-time improvement and fold/unfold transformation.

[28] Robert Skeel. Roundoff error and the patriot missile. SIAM News, 25(4):11, 1992.

[29] J. Steensgaard-Madsen. Typed representation of objects by functions. ACM Transactions on

Programming Languages and Systems (TOPLAS), 11(1):67–89, 1989.

[30] Peter Thiemann. Cogen in six lines. In ACM SIGPLAN International Conference on Func-

tional Programming 1996, pages 180–189, 1996.

[31] C.P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis, Oxford,

1971.

96

Vita

Mattox Beckman was born in Cleveland, Ohio, in 1970, and lived in five different states before

moving to Urbana in 1989. Mattox received his B.A. in Mathematics and Computer Science in

December, 1992. He now lives in Chicago where he teaches at the Illinois Institute of Technology.

97

